首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, pure and Zn‐doped TiO2 nanoparticles (NPs) with various content of Zn were prepared by a sol–hydrothermal method and were employed as active substrates for surface‐enhanced Raman scattering (SERS). On the 3% Zn‐doped TiO2 substrate, 4‐mercaptobenzoic acid(4‐MBA) molecules exhibit a higher SERS intensity by a factor of 6, as compared with the native enhancement of 4‐MBA adsorbed on undoped TiO2 NPs. Moreover, the higher SERS activity was still observed on the 3% Zn‐doped TiO2 NPs at temperature even up to 125 °C. These results indicate that an appropriate amount of Zn doping can improve the SERS performances of TiO2 SERS‐active substrates. The introduction of Zn dopant can enrich the surface states (defects) of TiO2 and improve the separation efficiency of photo‐generated charge carriers (electrons and holes) in TiO2, according to measurements of X‐ray diffraction, UV‐visible diffuse reflectance spectroscopy, and photoluminescence, which are responsible for the influence of Zn dopant on the improved SERS performances of TiO2 NPs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A simple synthesis method of silver nanoparticles and its application as an active surface‐enhanced Raman spectroscopy (SERS) colloid are presented in this work. The photoreduction of AgNO3 in presence of sodium citrate (NaCit) was carried out by irradiation with different light sources (UV, white, blue, cyan, green, and orange) at room temperature. The evaluation of silver nanoparticles obtained as a function of irradiation time (1–24 h) and light source was followed by UV‐visible absorption spectroscopy. This light‐modification process results in a colloid with distinctive optical properties that can be related to the size and shape of the particles. The Ag colloids, as prepared, were employed as active colloids in SERS. Pyridine and caffeine were used as test molecules. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
We have developed a new substrate for surface‐enhanced Raman scattering (SERS) measurements involving a thin silver layer deposited over an ion‐etched TiO2 inverse opal. The latter is formed by chemically infiltrating a polystyrene opal array with TiO2 followed by a thermal decomposition of the spheres. The SERS response of the these substrates is examined for several sphere sizes and lasers wavelengths; the results show that such substrates yield high enhance factors, comparable to substrates involving a silver layer deposited directly on a polystyrene opal array. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Wide‐bandgap material based all‐dielectric metasurfaces have been ideal platforms for the realization of arbitrary phase control in visible spectrum. While TiO2 metasurfaces are very promising in broadband and high‐efficiency anomalous transmission, meta‐hologram, and meta‐lenses et al., the current realizations are strongly dependent on the sophisticated fabrication technique to fabricate TiO2 nano‐pillars with aspect ratio > 10. Herein we experimentally demonstrate a much simpler approach to realize efficient phase control of visible light. By exploiting TiO2 nano‐blocks as meta‐atoms on a ground metal plane, we find that TiO2 metasurface with aspect ratio around 1‐1.5 is good enough to produce phase changes covering ‐π to π and high reflection efficiency simultaneously. Based on the phase control of the meta‐reflectarray, anomalous reflection with a ratio between anomalous reflection and normal reflection ~ 74/26 have been experimentally realized using a combination of typical electron‐beam lithography, electron‐beam evaporation, and a simple lift‐off process. Similarly, high performance TiO2 metasurface in form of hologram has also been demonstrated for red (633 nm), green (520 nm), and blue (445 nm) wavelengths. We believe this research shall route a new way to cost‐effective all‐dielectric metasurfaces and advance their applications in encryption, anti‐counterfeiting, and wearable displays.  相似文献   

5.
A tubular array of TiO2 nanotubes on Ti matrix was used as a support for Ag or Cu sputter‐deposited layers intended for surface‐enhanced Raman scattering (SERS) investigations. The composite samples of Ag/TiO2–nanotube/Ti and Cu/TiO2–nanotube/Ti were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) [and scanning Auger microscopy (SAM)] to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured after it had been adsorbed on the TiO2–nanotube/Ti substrates covered with thin Ag or Cu deposit as well as on the bulk electrochemically roughened Ag or Cu reference substrates. It was found that the SERS spectra measured for pyridine adsorbed on the bulk silver substrate were significantly different than the spectra measured on the TiO2–nanotube/Ti substrates covered the Ag layer. The spectra measured for pyridine adsorbed on the Ag/TiO2–nanotube/Ti suggest that on the surface of such a composite substrate there are many Lewis acidic sites. Spectra typical for pyridine adsorbed on acidic sites were observed even after deposition of a relatively thick silver layer (e.g. an Ag layer with an average thickness of 80 nm) on the TiO2–nanotube/Ti support. Our findings suggest that TiO2–nanotube/Ti support is a promising substrate for the preparation of metallic nano‐clusters on a support containing acidic active sites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Plasmonic systems based on metal nanoparticles on a metal film with high optical absorption have generated great interests for surface‐enhanced Raman scattering (SERS). In this study, we prepare a broadband‐visible light absorber consisting Au nanotriangles on the surface of a continuous optically opaque gold film separated with a dielectric SiO2 layer, which is a typical metal‐insulator‐metal (MIM) system, and demonstrate it as an efficient SERS substrate. The MIM nanostructure, prepared using nanosphere lithography with a very large area, shows a broadband with absorption exceeding 90% in the wavelength regime of 630–920 nm. We observe an average SERS enhancement factor (EF) as large as 4.9 × 106 with a 22‐fold increase compared to a single layer of Au nanotriangles directly on a quartz substrate. A maximum SERS EF can be achieved by optimizing the thicknesses of the dielectric layer to control the optical absorption. Owing to the simple, productive, and inexpensive fabrication technique, our MIM nanostructure could be a potential candidate for SERS applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the fabrication of an active surface‐enhanced Raman scattering (SERS) substrate by self‐assembled silver nanoparticles on a monolayer of 4‐aminophenyl‐group‐modified glassy carbon (GC) is reported. Silver nanoparticles are attached to the substrate through the electrostatic force between the negatively charged silver nanoparticles and the positively charged 4‐aminophenyl groups on GC. The active SERS substrate has been characterized by means of tapping‐mode atomic force microscopy (AFM), indicating that large quantities of silver nanoparticles are uniformly coated on the substrate. Rhodamine 6G (R6G) and p‐aminothiophenol (p‐ATP) are used as the probe molecules for SERS, resulting in high sensitivity to the SERS response, with the detection limit reaching as low as 10−9 M . This approach is easily controlled and reproducible, and more importantly, can extend the range of usable substrates to carbon‐based materials for SERS with high sensitivity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Four L ‐valine (L ‐Val) phosphonate dipeptides that are potent inhibitors of zinc metalloproteases, namely, L ‐Val‐C(Me)2‐PO3H2 (V1), L ‐Val‐CH(iP)‐PO3H2 (V2), L ‐Val‐CH(iB)‐PO3H2 (V3), and L ‐Val‐C(Me)(iP)‐PO3H2 (V4), are studied by Fourier‐transform infrared (FT‐IR) spectroscopy, Fourier‐transform Raman spectroscopy (FT‐RS), and surface‐enhanced Raman scattering (SERS). The band assignment (wavenumbers and intensities) is made based on (B3LYP/6‐311 + + G**) calculations. Comparison of theoretical FT‐IR and FT‐RS spectra with those of SERS allows to obtain information on the orientation of these dipeptides as well as specific‐competitive interactions of their functionalities with the silver substrate. More specifically, V1 and V4 appear to interact with the silver substrate mainly via a  CsgCH3 moiety localized at the  NamideCsg(CH3)P molecular fragment. In addition, the  POH and isopropyl units of V4 assist in the adsorption process of this molecule. In contrast, the  CαNH2 and  PO3H groups of V2 and V3 interact with the silver nanoparticles, whereas their isopropyl and isobutyl fragments seem to be repelled by the silver substrate (except for the  CH2  of V3), similar to the  Cβ(CH3)2 fragment of L ‐Val for all L ‐Val phosphonate dipeptides investigated in this work. The adsorption mechanism of these molecules onto the colloidal silver surface is also affected by amide bond behavior. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
We have demonstrated a novel method to generate the nanostructured substrate that shows a large enhancement with a spatially uniform enhancement factor of approximately 106 in surface enhanced Raman scattering (SERS). The substrates are fabricated using plasma selective etching. First, the Al2O3–TiC template which contains mixed Al2O3 and TiC grains with the diameters of ~400 nm is selected as a base plate. The Al2O3 and TiC grains have different physical properties, such as hardness, which corresponds to different etching rate in a plasma gas. Then, the Al2O3–TiC substrate is selectively etched to generate a random macro‐texture (MT) with different depths using the plasma of mixed gas of Ar and C2H4. Third, the MT substrate is deposited with a silver film (Ag). We further demonstrate that by varying the thickness of Ag layer, the EF is different which is confirmed by the plasmonic localized electric fields calculations using finite difference time domain. Finally, we combine this novel Ag MT substrate with ultrathin dielectric film, and the prepared substrates are coated with a 10 Å ta‐C film. The 10 Å ta‐C film can protect the oxygen‐free Ag in air and prevent Ag ionizing in aqueous solutions. More importantly, the ultrathin ta‐C can release the strongest plasmonic electric field to the outside of ta‐C layer and get a higher electric field than the uncoated Ag substrate. We expect that this method has more potential applications in analytic assays using SERS technology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, monodisperse bimetallic nanorods with gold (Au) nanorod core and silver (Ag) shell (Au@AgNRs) were synthesized through seed‐mediated growth process by reduction of AgNO3 using Au nanorods with narrow size and shape distribution as seeds. With increasing the used amount of AgNO3, the Ag shell thickness of their lateral facets is raised faster than that of their two tips, leading to a decrease of their aspect ratios. Four plasmon bands are observable on the extinction spectra of Au@AgNRs, which are attributed to the longitudinal dipolar plasmon mode, transverse dipolar plasmon mode, and octupolar plasmon mode of the core‐shell structured bimetallic nanorods, respectively. As their Ag shell thickness increases, their longitudinal plasmon band blue‐shifts notably with the transverse plasmon band blue‐shifting and the two octupolar plasmon bands red‐shifting slightly, due to the decrease of their aspect ratios and enhancement of Ag plasmon resonance contribution. When used as surface‐enhanced Raman scattering (SERS) substrate for probing minute amounts of 4‐mercaptobenzoic acid in aqueous solution, Au@AgNRs have much stronger SERS activity than Au nanorods, and the obtained Raman signals are highly reproducible arising from their excellent monodispersity. Their SERS activity is remarkably increased with their Ag shell thickness thanks to the enhancing surface electric field and the chemical enhancement associated with electronic ligand effect. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Compacted powders of commercially available nano‐ and microparticles of silver were used to successfully induce the surface‐enhanced Raman scattering (SERS) effect in spruce milled‐wood lignin (MWL). For the two silver particle sizes used in this investigation, the spectra were mostly similar. Some general characteristics of the lignin SERS spectrum are described. The SERS technique was found to be sensitive for detecting lignin. Significant spectral changes were present between the SERS and normal Raman spectra of MWL. The SERS spectrum was assigned on the basis of literature‐reported vibrational assignments of lignin and its models. Based on significant changes in Raman features, we propose that the lignin is strongly adsorbed on silver. To determine whether SERS of lignin can be obtained directly from wood without its isolation, Wiley‐milled spruce wood (WMW) adsorbed on silver was studied. The results indicated that not only the surface‐enhancement effect was successfully induced in the WMW, but that its spectrum was similar to MWL SERS. Moreover, for WMW, no signals from the carbohydrate components were observed, and therefore, lignin was detected selectively. This nano‐ and microparticle‐based molecularly specific method is expected to make a significant contribution in identifying and investigating lignin in various lignin‐containing materials. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

12.
Silver nanorods with average diameters of 120-230 nm and aspect ratio of 1.7-5.0 were deposited on the surface of TiO2 films by photoelectrochemical reduction of Ag+ to Ag under UV light. The composite films prepared on soda-lime glass substrates were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the TiO2 film after UV irradiation in AgNO3 solution is composed of anatase phase TiO2 and metallic silver with face centered cubic structure. Other compounds cannot be found in the final films. The maximum deposition content of silver particles on the surface of TiO2 film was obtained with the AgNO3 concentration of 0.1 M. The kinetic growth rates of silver particles can be controlled by photocatalytic activity of TiO2 films. The studies suggest that the growth rates of silver particles increase with the enhancement of photocatalytic activity of TiO2 films. The maximum growth rate of silver particles loaded on TiO2 films can be up to 0.353 nm min−1 among samples 1#, 2# and 3#, while the corresponding apparent rate constant of TiO2 is 1.751 × 10−3 min−1.  相似文献   

13.
Photocatalyst‐assisted degradation of organic pollutants, which exhibits a novel strategy for solar‐energy utilization, possesses enormous potential in various applications. Extending the light‐absorption range in the spectrum of sunlight and improving light‐conversion efficiency are always primary issues to enhance the catalytic performance of these photocatalysts. Herein, a new structure of gold‐nanorod‐decorated TiO2 rambutan‐like microspheres is designed, which exhibits superior photocatalytic ability toward Rhodamine B in the range of visible light due to the 3D distribution of the TiO2 branches on the surface of the microspheres, which prompts the multireflection of photons. The absorption rate of photons is thereby tremendously enhanced. This is beneficial for the generation of hot electrons originating from the localized surface plasmonic resonance of Au nanorods, which can be used to both initiate the reaction and produce the photothermal effect. Hot electrons generated by a single Au nanorod in microspheres to initiate the degradation reaction can be as high as 2.5 times of those in the nanowires' counterpart. Moreover, the heating power of a single Au nanorod in microspheres reaches up to 4.4 times higher than that in nanowires, which further accelerates the degradation rate. The reaction pathway of visible‐light‐assisted RhB degradation catalyzed by Au/TiO2 microspheres goes through an initial N‐deethylation process instead of the complete cycloreversion catalyzed by pure TiO2 microspheres under UV irradiation. This strategy of structure design for improved photon absorption, which achieves high degradation rate and photothermal effect, is promising for the development of novel photocatalysts.  相似文献   

14.
Electromagnetic coupling between localised plasmons on metal nanoparticles and the strong localised fields on a micro‐structured surface is demonstrated as a means to increase the enhancement factor in surface‐enhanced Raman scattering (SERS) spectroscopy. Au nanoparticles of diameter 20 nm were deposited on a micro‐structured Au surface consisting of a periodic array of square‐based pyramidal pits (Klarite). The spectra of 4‐aminothiophenol (4‐ATP) were compared before and after deposition of Au nanoparticles on the micro‐structured surface. The addition of Au nanoparticles is shown to provide significantly higher signal intensities, with improvements of the order of ∼103 per molecule compared with spectra obtained from the micro‐structured substrate alone. This hybrid approach offers promise for combining nanoparticles with micro‐ and nano‐structured surfaces in order to design SERS substrates with higher sensitivities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Silver nanoparticles deposited on various ‘inert’ porous materials (mainly Al2O3 and TiO2) are often used as substrates for surface‐enhanced Raman scattering (SERS) measurements. In this study, we used the sputter deposition technique to cover tubular arrays of Al2O3 and TiO2 with Ag nanoparticles. Raman spectra of pyridine (as a probe molecule) and of two selected dyes (5‐(4‐dimethylaminobenzylidene)rhodanine and 5‐(4‐(dimethylamino)benzylidene)‐3‐(3‐methoxypropyl)rhodanine) adsorbed on fabricated Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al substrates were measured. We found that the SERS spectra of pyridine adsorbed on Ag nanoparticles deposited on an Al2O3‐n/Al substrate are distinctly different from those measured for an Ag/TiO2‐n/Ti composite. Similar effects were observed for dyes adsorbed on the surface of both composites. The spectral differences between two kinds of composites (Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al) are discussed in terms of (1) the modified electronic structure of the Ag nanoparticles due to their interaction with different substrate materials and (2) the different atomic topology of the metal particles thus deposited on the surfaces of the substrates. Composite samples were also studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Nano silver films were prepared by the electrolysis method. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were employed to detect the morphology of the silver particles. The surface‐enhanced Raman scattering (SERS) spectra of the hemoglobin on nano silver film were recorded. It is seen from the SERS spectra that the nano silver films can enhance the Raman signals of the hemoglobin efficiently, and sodium citrate and phosphate buffered saline have no influence on the SERS spectra of hemoglobin. The electrolysis technique to fabricate this highly bioactive, stable, reusable, and low‐cost SERS substrate will be useful in the development of hemoglobin detection methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
《X射线光谱测定》2005,34(3):200-202
X‐ray fluorescence measurements were carried out for silver metal and a number of silver compounds containing Ag+ ions such as Ag2CO3, Ag2SO4, AgNO3, AgCl, AgBr and AgI using 59.6 keV γ‐rays, emitted from 241Am, as the excitation source, to evaluate the value of Kβ/Kα x‐ray intensity ratio. For silver metal the value of this parameter is found to be 0.206 ± 0.003 and wide variations, 0.190 ≤ Kβ/Kα≤ 0.207, were observed for these compounds. The results are explained in terms of the charge transfer occurring between Ag+ and the coordinating anions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
In the present study, several natural organic dyes used in antiquity, especially in textile dyeing, were analysed by surface‐enhanced Raman scattering (SERS) spectroscopy, in order to build a wide database that could integrate the data previously published in the literature. In particular, we reported for the first time the SERS spectra of 11 dyes: dragon's blood, sandalwood, annatto, safflower yellow and red, old fustic, gamboge, catechu, kamala, aloe and sap green. Silver colloids (Ag colloids) prepared according to the Lee–Meisel procedure, i.e. by reduction of a silver nitrate (AgNO3) aqueous solution with trisodium citrate dihydrate, were used as substrate. As its efficiency had been tested in a previous work, sodium perchlorate (NaClO4) 1.8 M was again employed as aggregating agent, giving the best results when added to the silver nanoparticles after the analyte. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
To increase the sensitivity in surface‐enhanced Raman scattering (SERS) measurement, a three‐dimensional (3D) SERS substrate was prepared by the decoration of silver nanoparticles (AgNPs) on the side walls of ZnO nanowires. The prepared 3D SERS substrates provide the advantages of highly loaded density of AgNPs, with a large specific surface area to interact with analytes, and the ease for the analytes to access the surfaces of AgNPs. To prepare the substrates, ZnO nanowires were first grown on a glass plate by wet chemical method. By treating SnCl2 on the surfaces of ZnO nanowires, Ag seeds could be formed on the side wall of the ZnO nanowires, which were further grown to a suitable size for SERS measurements via photochemical reduction. To optimize and understand the influences of the parameters used in preparation of the substrates, the reaction conditions were systematically adjusted and examined. Results indicated that AgNPs could be successfully decorated on the side wall of the ZnO nanowires only by the assistances of SnCl2. The size and density of AgNPs were affected by both the concentration of silver nitrate and the irradiation time. With optimized condition, the prepared 3D substrates provided an enhancement factor approaching 7 orders of magnitude compared with conventional Raman intensity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high catalytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a facile method and employed for the in situ SERS monitoring of the photocatalytic degradation reaction of crystal violet. Through the variation of the AgNO3 concentration, Ag content on the Cu2O template can be controllably tuned, which has great influence on the SERS effect. The results indicate that Ag nanoparticles form on the Cu2O nanoframes to obtain the Cu2O/Ag nanocomposite, which can act as an excellent bifunctional platform for in situ monitoring of photocatalytic degradation of organic pollutions by SERS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号