首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SERS spectra of pyridine adsorbed on various kinds of vacuum evaporated (10?5 Torr) metals (Ag, Au, Ni, Pd, Pt, Ti and Co) and on single crystals of semiconductors (NiO and TiO2) were obtained at room temperature. The peak frequencies as shifted from those of free pyridine are assigned to the bands of N-bonded pyridine (chemisorbed pyridine). The λ0 dependence varied remarkably from metal to metal. The peak frequency and the λ0 dependence for the pyridine adsorbed on NiO or TiO2 are in good agreement with those on Ni or Ti, respectively, showing the chemical bonding between the N atom and the Ni or Ti atom. The effects of background and of polarization on the SERS spectra were examined in detail, thus revealing the orientation of the adsorbed molecules. Carbon monoxide chemisorbed on Ag was measured by infrared specular reflection as well as by SERS. The results indicate that chemisorbed species on the same substrate do not always give SERS. The SERS spectra obtained are well interpreted as being due to the mechanism of resonance Raman scattering via charge transfer excitation of the adsorbent-adsorbate interaction.  相似文献   

2.
采用共沉淀法合成了Fe_3O_4磁性纳米颗粒,进一步以柠檬酸三钠还原法制备出了具有SERS活性的Fe_3O_4/Ag磁性包覆修饰材料,用紫外可见吸收光谱、能谱及透射电镜对结构与形貌进行表征,发现所制备的Fe_3O_4/Ag纳米材料粒径约为30~60nm,形貌规整接近球形,经测试Fe_3O_4/Ag材料很容易被磁铁收集,能够满足分散萃取再收集的需要。根据密度泛函理论(DFT)对杀线威(Oxamyl)、Oxamyl-Ag和OxamylAg4进行了理论结构优化计算,得到了杀线威的理论拉曼光谱和与Ag表面增强拉曼光谱及其谱峰的归属,结合表面增强拉曼光谱(SERS)测定,研究了杀线威在Fe_3O_4/Ag表面的吸附行为和增强效应,测算得到杀线威在Fe_3O_4/Ag表面上的增强因子为2.08×105。研究表明:理论计算的杀线威拉曼光谱与测定的拉曼光谱具有较好的一致性,DFT理论计算中发现研究分子与活性Ag原子作用越多,与实测值常规拉曼NRS越接近;杀线威以双键侧N原子和S原子与Fe_3O_4/Ag表面吸附作用为主;双键侧N优先与Ag吸附成键后,整个分子靠近Ag表面,最终使得双键侧N原子与S原子共同吸附在Ag表面;Fe_3O_4/Ag磁性纳米复合材料具有显著的富集吸附和拉曼增强作用;可利用其作为拉曼基底,以实现SERS光谱法对杀线威农残的快速分析检测。  相似文献   

3.
Silver thiolate is a layered compound with a Raman spectrum that is known to change with time, becoming the same as the surface‐enhanced Raman scattering (SERS) spectrum of the parent thiol molecule adsorbed on Ag nanoparticles. On this basis, the Raman scattering characteristics of silver 4‐aminobenzenethiolate (Ag‐4ABT) compounds were investigated to determine whether certain peaks that are identifiable in the SERS spectrum of 4‐aminobenzenethiol (4‐ABT) but absent in its normal Raman spectrum were also apparent in the Ag salt spectrum. For comparative purposes, the Raman scattering characteristics of silver 4‐dimethylaminobenzenethiolate (Ag‐4MABT) were also examined. Raman spectra acquired while spinning the sample were typified by only a1‐type vibrational bands of Ag‐4ABT and Ag‐4MABT, whereas in the static condition, several non‐a1‐type bands were identified. The spectral patterns acquired in the static condition were similar to the intrinsic SERS spectra of 4‐ABT or 4‐dimethylaminobenzenethiol (4‐MABT) adsorbed on pure Ag nanoparticles. Notably, the CH3 group vibrational bands were observable for Ag‐4MABT irrespective of the sample rotation. In addition, no decrease in intensity during irradiation with a visible laser was observed for any of the bands, suggesting that no chemical conversion actually took place in either 4‐ABT or 4‐MABT. The preponderance of evidence led to the conclusion that the non‐a1‐type bands observable in the SERS spectra must be associated with the chemical enhancement mechanism acting on the Ag nanoparticles. The chemical enhancement effect was more profound at 514.5 nm than at 632.8 nm, and was more favorable for 4‐ABT than 4‐MABT at both wavelengths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Roughened nickel electrode surfaces have been demonstrated to exhibit a moderate enhanced Raman scattering effect with an enhancing factor of about 104, which is not suitable in some cases for further inhibition adsorbates study. We reported here a new modified roughening procedure of nickel electrodes, by which a high S/N ratio surface‐enhanced Raman spectroscopy (SERS) of pyridine was obtained. At least two major advantages were found for the modified roughening methods: (1) enhancing factor was improved by a factor of about 10, (2) SERS‐active sites were distributed uniformly on the Ni surfaces. Potential‐dependent SERS spectra of a candidate inhibitor molecule benzotriazole (BTAH) adsorbed onto nickel electrodes were briefly presented for verifying the feasibility of the modified roughening method in this paper. Results showed that BTAH molecules were adsorbed on the nickel electrodes in neutral molecule form at more negative potentials and a polymer‐like film with the composition of [Nin(BTA)p]m formed on the nickel electrodes with the positive shift of potentials. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Surface‐enhanced Raman scattering (SERS) spectra are presented and analyzed for two important organophosphate pesticides, dimethoate (DMT) and omethoate (OMT). Very detailed SERS spectra were obtained by aggregated Ag hydrosols, both in aqueous suspension and dried on a glass substrate. The SERS and ordinary Raman spectra of DMT do not resemble each other, suggesting that a chemical reaction immediately occurs when DMT is adsorbed onto the metal surface. We propose that the reaction product is OMT, which is the oxygen analog of DMT, on the basis of the Raman and SERS spectra of OMT. Further support is derived from the calculated Raman spectra of DMT and OMT. Minor wavenumber and intensity differences that are observed between the SERS spectra of DMT reaction product and those of OMT could be related to different metal/adsorbate interaction modes. The results can be useful in the development of new analytical methods for the determination of pesticide residues in food. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
We report the direct observation of surface‐enhanced Raman scattering (SERS) effect using metal–organic frameworks (MOFs) as substrates. Without the aid of any metal colloids or enhancing agents, the SERS signals of methyl orange (MO) adsorbed in MOFs were observed and even remained active if the organic linkers in MOFs were completely removed by high temperature and O2 plasma treatments. It implies that the SERS active site is at the metal oxide clusters. The ultraviolet‐visible spectra of MO, MOFs, and MO–MOF complexes show that absorption peaks are far from laser excitation line. Thus, conventional resonance enhancement effect should be ruled out, and charge‐transfer mechanism is the most likely scenario responsible for the observed SERS effect. Density functional theory (DFT) was used to interpret the chemical enhancement mechanism and the adsorption orientation‐dependent SERS spectra in our observation. The preferred adsorption orientations calculated by DFT method are consistent with the observed SERS results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Tubular arrays of TiO2 nanotubes (ranging in diameter from 40 to 110 nm) on a Ti substrate were used as a support for Ag, Au or Cu deposits obtained by the sputter deposition technique, where the amount of metal varied from 0.01 to 0.2 mg/cm2. Those composite supports were intended for surface-enhanced Raman scattering (SERS) investigations. Composite samples were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured at different cathodic potentials ranging from −0.2 down to −1.2 V after the pyridine had been adsorbed on the metal-covered TiO2 nanotube/Ti substrates. In addition, SERS spectra on a bulk standard activated Ag, Au and Cu substrates were also measured. The SERS activity of the composite samples was strongly dependent on the amount of metal deposit, e.g. at and above 0.06 mg Ag/cm2, the intensity of SERS signal was even higher than that for the Ag reference substrate. The high activity of these composites is mainly a result of their specific morphology. The high SERS sensitivity on the surface morphology of the substrate made it possible to monitor very small temporal changes in the Ag metal clusters. This rearrangement was not detectable with microscopic (SEM) or microanalytical (AES) methods. The SERS activity of Au or Cu clusters was distinctly lower than those of Ag. The spectral differences exhibited by the three kinds of composites as compared to the reference metal samples are discussed.  相似文献   

8.
We recorded surface‐enhanced Raman scattering (SERS) spectra of metal‐string complexes Co3(dpa)4 Cl2 [di(2‐pyridyl)amido (dpa)], Ni3(dpa)4 Cl2 and the oxidized form of the Ni3 complex to determine their vibrational wavenumbers and to investigate their structures. For SERS measurements these complexes were adsorbed on silver nanoparticles in aqueous solution to eliminate the constraint of a crystal lattice and the complexes remain in thermal equilibrium. From our analysis of the vibrational normal modes we assigned the SERS lines at 242 and 276 cm−1 to Ni3 and Co3 symmetric‐stretching modes of the symmetric form. For Co3 (dpa)4Cl2 a Raman line at 383 cm−1 was assigned to the Co Co stretching mode of the unsymmetric form. The wavenumber of the Ni3 symmetric‐stretching mode of the oxidized form [Ni3(dpa)4]3+ is 274 cm−1, greater than that for neutral Ni3(dpa)4Cl2, in agreement with a prediction of delocalized molecular‐orbital theory that an electron is removed from an antibonding orbital after oxidation. The experimental data show that the SERS technique serves as an excellent tool to observe the variation of metal–metal bonding during an oxidation or reduction reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Raman scattering and surface‐enhanced Raman scattering (SERS) have been used to study the behavior of 4‐mercaptopyridine (4‐Mpy) dissolved in water and adsorbed on silver mirrors. In order to gain the actual structure and the theoretical modes of the 4‐Mpy dissolved in water and adsorbed on the surface of silver mirror, ab initio calculation at the Hartree–Fock (HF) level and density functional theory (DFT) at Beck's three‐parameter Lee‐Yang‐Parr (B3LYP) level were performed to calculate the vibrational modes and wavenumbers. 4‐Mpy/2H2O and 4‐Mpy/Ag complex systems were optimized, and then the corresponding Raman spectra were calculated and analyzed. Compared with the experimental results, the calculated results of 4‐Mpy and 4‐Mpy/2H2O complex systems obtained from DFT method were more accurate. Among the results calculated with HF method, the one with three Ag atoms was economical, which took less computer time but gave equivalent results to those with more noumber of Ag atoms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
To better understand experimentally observed surface‐enhanced Raman Scattering (SERS) of polychlorinated biphenyls (PCBs) adsorbed on nanoscaled silver substrates, a systematic theoretical study was performed by carrying out density functional theory and time‐dependent density functional theory calculations. 2,2′,5,5′‐tetrachlorobiphenyl (PCB52) was chosen as a model molecule of PCBs, and Agn (n = 2, 4, 6, and 10) clusters were used to mimic active sites of substrates. Calculated normal Raman spectra of PCB52–Agn (n = 2, 4, 6, and 10) complexes are analogical in profile to that of isolated PCB52 with only slightly enhanced intensity. In contrast, the corresponding SERS spectra calculated at adopted incident light are strongly enhanced, and the calculated enhancement factors are 104 ~ 105. Thus, the experimentally observed SERS phenomenon of PCBs supported on Ag substrates should correspond to the SERS spectra rather than the normal Raman spectra. The dominant enhancement in Raman intensities origins from the charge transfer resonance enhancement between the molecule and clusters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This paper highlights the use of Raman, FT-Raman and surface-enhanced Raman scattering (SERS) techniques for the study of humic substances. In contrast to other technologies which reveal information only about the average compositions and the kinds of functional groups present in humic substances, Raman and especially FT-Raman spectroscopies characterize the building blocks of humic substances and their changes in derivation and separation processes. Furthermore, surface-enhanced Raman scattering (SERS) techniques are able to readily detect humic substances and co-existing organic species at low concentrations typically found in natural environments and reveal definitive information about the specific groups in humic substances that bind on metal electrodes. Further applications of both Raman and SERS techniques can be extended to complicated systems as well as real environmental samples. Experiments have demonstrated: (1). the backbones of humic substances are structurally disordered carbon networks in most cases; (2). The backbones of humic substances from different sources and types are similar to each other; (3). Normal Raman spectroscopic study of humic substances should concentrate on the use of near-IR laser(s) resulting from strong fluorescence background and self-adsorption under the excitation with visible laser irradiation; (4). FT-Raman spectroscopy is the required analytical method to assess the effectivity of fractionation methods; (5). SERS spectra of humic substances on metal colloids and films are in most aces very similar to the corresponding Raman spectra of neutralized samples; (6). SERS techniques are very sensitive and highly selective, also both visible lasers and near-IR lasers can be used for SERS study; (7). SERS spectra on metal electrodes may provide additional information about the binding sites and adsorption mechanisms of humic substances on metal surfaces.  相似文献   

13.
The adsorption of aniline on a silver mirror was studied by surface‐enhanced Raman scattering (SERS) spectroscopy and density functional theory (DFT) calculation methods. The normal Raman and SERS spectra of pure aniline liquid and its solutions were recorded by a micro‐Raman spectrometer with excitation at 514.5 nm. Orientation of the aniline molecule adsorbed on the Ag mirror is discussed. The results indicate that pure aniline is adsorbed on the surface of the Ag mirror with a tilted orientation. The conformer with the nitrogen atom interacting with the metal surface would be dominant. DFT calculations further confirm the experimental results that charge transfer (CT) takes place from the highest occupied molecular orbital(HOMO) of aniline to the singly occupied molecular orbital (SOMO) of the silver surface. In this paper, the frontier molecular orbital theory has been successfully used to explore the interaction between the aniline molecule and the silver surface. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The electronic and magnetic properties of Fe-, Co-, and Ni-decorated two dimensional (2D) BC3 are systematically investigated by first-principles calculations. We find that the Fe, Co, and Ni atoms can be strongly adsorbed on the hollow sites of 2D BC3. Fe and Co adatoms are more stable when adsorbed on the hollow sites of the carbon rings in the 2D BC3, while the hollow sites of boron-carbon rings in the 2D BC3 are the most stable sites for the adsorption of Ni adatoms. These proposed metal–BC3 complexes exhibit interesting electronic and magnetic behaviors. In particular, the Fe–BC3 and Co–BC3 complexes are metals with magnetic ground states , while the Ni–BC3 complex behaves as a nonmagnetic semiconductor with a direct bandgap. Furthermore, our magnetic analysis reveals that induced magnetism in the Fe–BC3 and Co–BC3 complexes arises from their local magnetic moments. Functionalization of 2D BC3 through these metal–adatom adsorption appears to be a promising way to extend its applications.  相似文献   

15.
刘江美  刘文涵  滕渊洁  袁荣辉 《发光学报》2015,36(12):1477-1484
采用共沉淀法合成Fe3O4纳米颗粒,再以柠檬酸三钠还原AgNO3获得了具有SERS活性的Fe3O4@Ag磁性纳米复合材料。基于密度泛函理论(DFT)的量子化学计算方法和表面增强拉曼光谱(SERS)技术,从理论计算和实验测定表征探讨了2-噻吩甲酸(2-TCA)在Fe3O4@Ag表面的吸附行为和增强效应。结果表明:理论计算得到的拉曼光谱与实际测得的常规拉曼光谱基本一致,而在DFT理论计算中所键连的Ag原子数越多,与实测值就越接近。溶液的浓度和pH对拉曼增强效果有很大的影响,当溶液的pH=3且浓度为1×10-4 mol·L-1时有最大拉曼增强效应。峰强随2-TCA浓度的增加呈现先增大后减小的趋势,浓度过大会导致大量2-TCA分子吸附聚集在Ag表面形成局部"拥堵",阻碍了激发光尤其是光谱信号的散射通过,从而减弱了拉曼增强效应。pH的变化使溶液中2-TCA分子形态发生改变,结构形态不同,其在Ag表面的吸附方式也不同。中性C4H3SCOOH分子以环上S:形式垂直吸附键合在Ag表面,形成S—Ag配位键而产生SERS光谱。-1价C4H3SCOO-离子以S—Ag配位和O—Ag共价"双键合"侧卧方式共同吸附在Ag表面而产生SERS光谱。在Ag表面,以单独S—Ag配位键吸附或键合的能力比S—Ag配位和O—Ag共价共同吸附方式要弱,但其产生的SERS信号更强,故2-TCA中性分子比2-TCA-离子更有利于SERS的产生。随着pH值的增加,溶液中的2-TCA由中性分子逐渐转化为-1价的C4H3SCOO-离子,因而在pH>3以后,拉曼增强效应逐步减弱。  相似文献   

16.
咖啡酸(CA)是一种具有很高的医学价值的药物成分,在抗菌抗病毒方面应用广泛,尤其是咖啡酸及其衍生物在抗肿瘤方面有着巨大作用,现在对咖啡酸的相关研究越来越多,但大部分都是关于咖啡酸医学性质的研究,所以对咖啡酸分子的微观结构研究是非常有必要的。目前关于CA在Ag表面上的表面增强拉曼散射(SERS)光谱的理论与实验结合的研究尚未见报道,而对其振动光谱及表面增强机理的研究可以为咖啡酸的各种药学机理的研究提供一种科学的物理解释,所以有必要将密度泛函理论(DFT)方法与表面增强拉曼散射技术相结合,对咖啡酸在Ag纳米颗粒上的吸附性质及表面增强机理进行全面的研究,这对推进它们在医药学等领域的相关研究有着重要的参考价值。采用SERS与DFT技术对CA分子在Ag纳米颗粒表面上的表面增强拉曼光谱进行了研究。在实验方面,利用热还原反应原理,使用柠檬酸三钠和硝酸银在加热搅拌情况下制备Ag纳米颗粒,并使用激光共聚焦显微拉曼光谱仪测量了CA分子的常规拉曼散射(NRS)光谱及其表面增强拉曼散射(SERS)光谱。在理论计算方面,采用DFT的B3LYP方法,以6-31+G**和LANL2DZ分别作为C,H,O和Ag的计算基组来优化咖啡酸的分子构型,羟基与Ag4的吸附构型,羧基与Ag4的吸附构型,羟基与羧基共同与Ag4吸附的构型,并以此为基础分析计算了CA分子的NRS光谱以及三种可能吸附模型的SERS光谱,并结合实验结果进行比较。同时对CA分子的振动模式进行了详细指认。根据实验数据和理论结果分析,在452 cm-1处的谱峰归属为环面外弯曲振动和O-H面外弯曲振动的耦合,这说明CA分子上的酚羟基是与Ag纳米颗粒表面作用的,不过相互作用较弱,推测CA分子平面可能与Ag基底表面不垂直;出现在1 338 cm-1处的谱峰归属于COO-伸缩振动,则可以说明CA分子上的羧基可能与Ag纳米颗粒垂直吸附。结果表明,CA分子是以羧基和酚羟基为吸附位吸附在Ag纳米颗粒表面上的。同时对CA分子的振动模式进行了详细指认。该工作对推进咖啡酸在生物医药等领域进一步的应用将起到重要作用。  相似文献   

17.
The time development of surface enhanced Raman scattering (SF.RS) from pyridinc, pyrimidine, pyrazine, and cyanide adsorbed on Ag electrodes has been recorded during an oxidation-reduction cycle by using an optical multichannel analyzer. The OMA system, capable of detecting spectra over a range of 400 cm?1 in 25 ms, was employed to monitor changes in Raman intensities, frequency shifts, and linewidths. Whereas measurements on pyridine confirm previously reported results and resolve some controversial questions, results on pyrazine provide new insight into the SERS mechanism. Because of the inversion symmetry of pyrazine, the Raman and infrared active modes are separated, but no significant distinction is observed in the SERS time development of Raman active compared to infrared active modes. In SERS from cyanide, large changes in the C - N stretching frequency have been observed.  相似文献   

18.
19.
Surface Enhanced Raman Scattering (SERS) from electrodes exhibits a reversible potential dependence in a limited potential range. Cathodic of this range it is irreversibly quenched on Ag electrodes by more than one order of magnitude. This holds for adsorbed pyridine molecules, for chloride, bromide, iodide, cyanide or thiocyanate ions, and for water or deuterium oxide. Since the (sub)microscope roughness is not altered by this procedure, the quenching has to be explained by a vanishing of SERS active sites, an idea which is clearly confirmed in metal deposition experiments using SERS for pyridine as a probe. In some cases, the deposition of a fraction of a monolayer (θ ca. 0.01) of a foreign metal on Ag is sufficient to significantly modify the intensity, the Raman shift and the halfwidth of the SERS bands. For example, the almost total quenching of SERS on Ag electrodes at potentials cathodic of ?1.7V is prevented, to a great extent, by Cu coverages of θ=0.003. This evidences a low density of active sites. In other cases the impurity metal affect mainly on the SERS intensity, obviously by damping the electromagnetic resonances. These effects clearly reveal the importance and cooperation of local and non-local enhancement processes.  相似文献   

20.
研究了阳离子表面活性剂十六烷基三甲基溴化铵 (CTAB)对四 ( 4 N 甲基吡啶 )卟啉 (H2 TMPyP)及其银配合物 (AgTMPyP)在Ag胶中的表面增强拉曼散射 (SERS)谱的影响 .SERS光谱表明 ,吸附于Ag胶粒的H2 TMPyP与衬底银原子结合形成AgTMPyP ,加入CTAB后 ,部分AgTMPyP表面络合物还原为H2 TMPyP .相似的去金属化反应也出现在AgTMPyP/Ag胶 /CTAB体系中 .CTAB的加入使SERS谱带强度明显增加 .AgTMPyP的去金属化被认为是由于CTAB的存在使Ag胶颗粒表面附近微环境发生改变  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号