首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three types of Ag‐coated arrays from porous anodic aluminum oxide (AAO) were prepared and studied as substrates for surface‐enhanced Raman scattering (SERS). They were compared with Ag‐coated porous silicon (PSi) samples. AAO‐based substrates were prepared by the vapor deposition of silver directly onto the surface of porous AAO with different morphologies of the pores, whereas SERS‐active island films on the PSi were prepared by immersion plating. The resulting metallic nanostructures were characterized by UV‐vis absorption spectroscopy and scanning electron microscopy (SEM). Thermal evaporation leads to the formation of granular arrays of Ag nanoparticles on the surface of AAO. SERS activity of the substrates was tested using water‐soluble cationic Zn(II)‐tetrakis (4‐N‐methylpyridyl) porphyrin (ZnTMPyP4) as a probe molecule. The results indicate that all AAO‐based substrates studied here exhibit some degree of SERS activity. Noteworthy, for excitation at 532 nm, signals from AAO‐based substrates were comparable with those from the PSi‐based ones, whereas for 441.6 nm excitation they were about twice higher. The strongest SERS‐enhancement at 441.6 nm excitationwas provided by the AAO substrates with silver deposited on the monolith (originally nonporous) side of AAO. Preferential SERS‐enhancement of the bands ascribed to the vibrations of the N‐methylpyridinium group of ZnTMPyP4 when going to blue excitation was found. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the fabrication of an active surface‐enhanced Raman scattering (SERS) substrate by self‐assembled silver nanoparticles on a monolayer of 4‐aminophenyl‐group‐modified glassy carbon (GC) is reported. Silver nanoparticles are attached to the substrate through the electrostatic force between the negatively charged silver nanoparticles and the positively charged 4‐aminophenyl groups on GC. The active SERS substrate has been characterized by means of tapping‐mode atomic force microscopy (AFM), indicating that large quantities of silver nanoparticles are uniformly coated on the substrate. Rhodamine 6G (R6G) and p‐aminothiophenol (p‐ATP) are used as the probe molecules for SERS, resulting in high sensitivity to the SERS response, with the detection limit reaching as low as 10−9 M . This approach is easily controlled and reproducible, and more importantly, can extend the range of usable substrates to carbon‐based materials for SERS with high sensitivity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Silver nanoplates were prepared in a dual reduction system with NaBH4 and sodium citrate both as reducing agents. And then the as-prepared nanoplates could be growing up through multistage growth methodology. The average edge length of Ag nanoplates can be tailored from 40 nm to 260 nm without changing their shape, crystallinity, and the average thickness. Furthermore, the effectiveness of these silver nanoplates as substrates prepared by the silanization self-assembly method toward surface-enhanced Raman scattering (SERS) detection was evaluated by using 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) as probe molecules. It was found that the enhancement ability of the silver nanoplates film is remarkable lower than that of the spherical silver nanoparticle film. The reason is attributed to the electromagnetic mechanism and chemical mechanism. This work will be of great significance in understanding the SERS enhancement mechanism and in the fabrication of nanoparticle films for biosensing.  相似文献   

4.
To better understand experimentally observed surface‐enhanced Raman Scattering (SERS) of polychlorinated biphenyls (PCBs) adsorbed on nanoscaled silver substrates, a systematic theoretical study was performed by carrying out density functional theory and time‐dependent density functional theory calculations. 2,2′,5,5′‐tetrachlorobiphenyl (PCB52) was chosen as a model molecule of PCBs, and Agn (n = 2, 4, 6, and 10) clusters were used to mimic active sites of substrates. Calculated normal Raman spectra of PCB52–Agn (n = 2, 4, 6, and 10) complexes are analogical in profile to that of isolated PCB52 with only slightly enhanced intensity. In contrast, the corresponding SERS spectra calculated at adopted incident light are strongly enhanced, and the calculated enhancement factors are 104 ~ 105. Thus, the experimentally observed SERS phenomenon of PCBs supported on Ag substrates should correspond to the SERS spectra rather than the normal Raman spectra. The dominant enhancement in Raman intensities origins from the charge transfer resonance enhancement between the molecule and clusters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
We show in this paper how zinc oxide (ZnO)/silver (Ag) composite microspheres can be prepared by the reduction of Ag(NH3)2+ with the reducing agent formaldehyde in aqueous solution on the surface of ZnO microspheres. During the preparation, Sn2+ was absorbed on the surface of ZnO microspheres for sensitization and activation, and then Ag(NH3)2+ was reduced to Ag nanoparticles by the reducing agent to obtain ZnO/Ag composite microspheres. SEM and TEM images revealed silver nanoparticles with a diameter ranging from tens to 100 nm. X‐Ray photoelectron spectra (XPS), X‐ray diffraction (XRD) patterns and UV‐vis spectra were used to characterize the structure of the ZnO/Ag composite microspheres. The origin of the surface‐enhanced Raman scattering properties was traced to the surface of the ZnO/Ag composite microspheres. The enhancement factor was estimated in detail, and the enhancement mechanism for the SERS effect was also investigated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Silver thiolate is a layered compound with a Raman spectrum that is known to change with time, becoming the same as the surface‐enhanced Raman scattering (SERS) spectrum of the parent thiol molecule adsorbed on Ag nanoparticles. On this basis, the Raman scattering characteristics of silver 4‐aminobenzenethiolate (Ag‐4ABT) compounds were investigated to determine whether certain peaks that are identifiable in the SERS spectrum of 4‐aminobenzenethiol (4‐ABT) but absent in its normal Raman spectrum were also apparent in the Ag salt spectrum. For comparative purposes, the Raman scattering characteristics of silver 4‐dimethylaminobenzenethiolate (Ag‐4MABT) were also examined. Raman spectra acquired while spinning the sample were typified by only a1‐type vibrational bands of Ag‐4ABT and Ag‐4MABT, whereas in the static condition, several non‐a1‐type bands were identified. The spectral patterns acquired in the static condition were similar to the intrinsic SERS spectra of 4‐ABT or 4‐dimethylaminobenzenethiol (4‐MABT) adsorbed on pure Ag nanoparticles. Notably, the CH3 group vibrational bands were observable for Ag‐4MABT irrespective of the sample rotation. In addition, no decrease in intensity during irradiation with a visible laser was observed for any of the bands, suggesting that no chemical conversion actually took place in either 4‐ABT or 4‐MABT. The preponderance of evidence led to the conclusion that the non‐a1‐type bands observable in the SERS spectra must be associated with the chemical enhancement mechanism acting on the Ag nanoparticles. The chemical enhancement effect was more profound at 514.5 nm than at 632.8 nm, and was more favorable for 4‐ABT than 4‐MABT at both wavelengths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
We investigated the interfacial structures of various aromatic (each compound contains one or two phenyls) di‐α‐amino ( L1 – L3 ) and α‐amino‐α‐hydroxyphosphinic ( L4 – L6 ) acids immobilized onto an electrochemically roughened silver electrode surface in an aqueous solution using surface‐enhanced Raman scattering (SERS). These structures were compared to those on a colloidal silver surface to determine the relationship between adsorption strength and geometry. The presence of an enhanced ν19a ring band in the SERS spectra of L6 , L2 , and L3 on the electrode indicated that the benzene rings of those molecules interact with the electrode surface through localized CC bond(s). We observed significant band broadening of the benzene ring modes for all α‐hydroxyphosphinic acids on both substrates, except for L1 deposited onto the electrode surface. This suggests the possibility of direct interaction between the ring and Ag, although the benzene ring–surface π overlap is weaker for the colloidal silver than for the Ag electrode. The downward shift in wavenumber and alternations in the enhancement of a ν12 ring band indicate a general increase of tilt angle on both silver substrates in the order L3 < L4 < L5 < L6 . The altered enhancement of the bands due to the vibrations of the  NH2 and O PO fragments, a finding observed on both silver substrates, strongly suggests that the groups interact with different strength and geometry with these substrates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A method to stabilize silver surface‐enhanced Raman spectroscopy (SERS) substrates for in situ, high‐temperature applications is demonstrated. Silver island films grown by thermal evaporation were coated with a thin layer (from 2.5 to 5 nm) of alumina by atomic layer deposition (ALD), which protects and stabilizes the SERS‐active substrate without eliminating the Raman enhancement. The temporal stability of the alumina‐coated silver island films was examined by measurement of the Raman intensity of rhodamine 6G molecules deposited onto bare and alumina‐coated silver substrates over the course of 34 days. The coated substrates showed almost no change in SERS enhancement, while the uncoated substrates exhibited a significant decrease in Raman intensity. To demonstrate the feasibility of the alumina‐coated silver substrate as a probe of adsorbates and reactions at elevated temperatures, an in situ SERS measurement of calcium nitrate tetrahydrate on bare and alumina‐coated silver was performed at temperatures ranging from 25 to 400 °C. ALD deposition of an ultrathin alumina layer significantly improved the thermal stability of the SERS substrate, thus enabling in situ detection of the dehydration of the calcium nitrate tetrahydrate at an elevated temperature. Despite some loss of Raman signal, the coated substrate exhibited greater thermal stability compared to the uncoated substrate. These experiments show that ALD can be used to synthesize stable SERS substrates capable of measuring adsorbates and processes at high temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The solid‐phase synthesis of Ag‐coated Fe3O4 microsphere was elaborated under argon atmosphere. This straightforward process utilized neither reducing agents nor electric current and involved the dry mixing of a precursor of CH3COOAg with Fe3O4 microspheres followed by heating in an inert atmosphere. Ag nanoparticles with diameters of 30–50 nm were well‐decorated on the surfaces of Fe3O4 microspheres. The as‐synthesized Ag‐coated Fe3O4 microspheres were assembled into a surface‐enhanced Raman scattering (SERS) substrate holding clean and reproducible properties under an externally exerted magnetic force. Using these nanoprobes, analyte molecules can be easily captured, magnetically concentrated, and analyzed by SERS. This clean SERS substrate was used to detect 4‐aminothiophenol, even at a concentration as low as1.0 × 10–12 M. In particular, the Ag‐coated Fe3O4 microspheres, acting as reproducible SERS substrates, were applied to detect methyl‐parathion and 4‐mercaptopyridine. Strong SERS signals were obtained with the analytes at a concentration of 1.0 × 10–6 M. The unique, clean, and reproducible properties indicate a new route in eliminating the single‐use problem of traditional SERS substrates and show promising applications for detecting other organic pollutants. Similarly, this work may provide a new model system to a series of metal–Fe3O4 decorating reactions for a reproducible utilization. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The characteristics of the sol–gel matrix embedding Ag nanoparticles functionalized with 25,27‐dimercaptoacetic acid‐26,28‐dihydroxy‐4‐tert‐butylcalix[4]arene (DMCX) suitable for the in situ detection of polycyclic aromatic hydrocarbons (PAHs) in seawater is presented. The DMCX‐functionalized silver nanoparticles were produced by the thermal reduction method in xerogel film. The silver colloid blocks were formed in the sol–gel matrix, with a diameter ranging from 50 to 120 nm. DMCX forming the monolayer on the silver nanoparticle surface contributes to the surface‐enhanced Raman scattering (SERS) activity due to the aggregation of silver nanoparticles and the preconcentration of PAH molecules within the zone of electromagnetic enhancement. When selected, PAH molecules e.g. pyrene and naphthalene were adsorbed onto the SERS substrate; Raman band positions of PAH were slightly shifted. A calibration procedure reveals that this type of SERS substrate has a limit of detection of 3 × 10−10 mol/l for pyrene and 13 × 10−9 mol/l for naphthalene in artificial seawater. The Raman signal response on a pyrene concentration change in artificial seawater was evaluated using a 671‐nm Raman setup with a flow‐through cell. This type of SERS substrate will be suitable for the in situ trace detection of pollutant chemicals in seawater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A simple method is demonstrated to detect DNA at low concentrations on the basis of surface‐enhanced Raman scattering (SERS) via polyvinyl alcohol‐protected silver grasslike patterns (PVA‐Ag GPs) grown on the surface of the common Al substrate. By the SERS measurements of sodium citrate and thymine, the PVA‐Ag GPs are shown to be an excellent SERS substrate with good activity, stability and reproducibility. With the use of the tested molecule of thymine, the enhancement factor of the PVA‐Ag GPs is up to ~1.4 × 108. The PVA‐Ag GPs are also shown to be an excellent SERS substrate with good biocompatibility for DNA detection, and the detection limit is down to ~10−5 mg/g. Meanwhile, the assignations of the Raman bands and the adsorption behaviors of the DNA molecules are also analyzed. In this work, the geometry optimization and the wavenumber analysis of adenine–Ag and guanine–Ag complexes for the ground states are performed using density functional theory, B3LYP functional and the LanL2DZ basis set. The transition energies and the oscillator strengths of adenine–Ag and guanine–Ag for the lowest six singlet excited states were calculated by using the time‐dependent density functional theory method with the same functional and basis set. The results show that the charge transfer in the adenine–Ag and guanine–Ag complexes should be the chemical factor for the SERS of the DNA molecules. Lastly, this method may be employed in large‐scale preparation of substrates that have been widely applied in the Raman analysis of DNA because the fabrication process is simple and inexpensive. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Silver nanoparticles deposited on various ‘inert’ porous materials (mainly Al2O3 and TiO2) are often used as substrates for surface‐enhanced Raman scattering (SERS) measurements. In this study, we used the sputter deposition technique to cover tubular arrays of Al2O3 and TiO2 with Ag nanoparticles. Raman spectra of pyridine (as a probe molecule) and of two selected dyes (5‐(4‐dimethylaminobenzylidene)rhodanine and 5‐(4‐(dimethylamino)benzylidene)‐3‐(3‐methoxypropyl)rhodanine) adsorbed on fabricated Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al substrates were measured. We found that the SERS spectra of pyridine adsorbed on Ag nanoparticles deposited on an Al2O3‐n/Al substrate are distinctly different from those measured for an Ag/TiO2‐n/Ti composite. Similar effects were observed for dyes adsorbed on the surface of both composites. The spectral differences between two kinds of composites (Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al) are discussed in terms of (1) the modified electronic structure of the Ag nanoparticles due to their interaction with different substrate materials and (2) the different atomic topology of the metal particles thus deposited on the surfaces of the substrates. Composite samples were also studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A facile strategy has been developed for the preparation of bimetallic gold–silver (Au–Ag) nanocomposite films by alternating absorption of poly-(ethyleneimine)–silver ions and Au onto substrates and subsequent reduction of the silver ions. The composition, micro-structure and properties of the {PEI–Ag/Au}n nanocomposite films were characterized by ultraviolet visible spectroscopy (UV–vis), transmisson electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), surface enhanced Raman scattering (SERS) and cyclic voltammetry (CV). The UV–vis characteristic absorbances of {PEI–Ag/Au}n nanocomposite thin film increase almost linear with the number of bilayers, which indicates a process of uniform assembling. Appearance of a double plasmon bands in the visible region and the lack of apparent core–shell structures in the TEM images confirm the formation of bimetallic Au–Ag nanoparticles. The result of XPS also demonstrates the existence of Ag and Au nanoparticles in the nanocomposite films. TEM and FESEM images show that these Ag and Au nanoparticles in the films possess sphere structure with the size of 20–25 nm. The resulting {PEI–Ag/Au}n films inherit the properties from both the metal Ag and Au, which exhibits a unique performance in SERS and electrocatalytic activities to the oxidation of dopamine. As a result, the {PEI–Ag/Au}n films are more attractive compared to {PEI–Ag/PSS}n and {PEI/Au}n films.  相似文献   

15.
Highly ordered arrays of thiolated β‐cyclodextrin (HS‐β‐CD) functionalized Ag‐nanorods (Ag‐NRs) with plasmonic antennae enhancement of electrical field have been achieved for encapsulation and rapid detection of polychlorinated biphenyls (PCBs). The large‐area ordered arrays of rigid Ag‐NRs supported on copper base were fabricated via porous anodic aluminum oxide (AAO) template‐assisted electrochemical deposition. The inter‐nanorod gaps between the neighboring Ag‐NRs were tuned to sub‐10 nm by thinning the pore‐wall thickness of the AAO template using diluted H3PO4. The nearly perfect large‐area ordered arrays of Ag‐NRs supported on copper base render these systems excellent in surface‐enhanced Raman scattering (SERS) performance with uniform electric field enhancement, as testified by the SERS spectra and Raman mappings of rhodamine 6 G. Furthermore, the Ag‐NRs were functionalized with HS‐β‐CD molecules so as to capture the apolar PCB molecules in the hydrophobic cavity of the CD. Compared to the ordinary undecorated SERS substrates, the HS‐β‐CD modified Ag‐NR arrays exhibit better capture ability and higher sensitivity in rapid detection of PCBs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The last few years have witnessed rapid development of highly ordered and reproducible surface‐enhanced Raman scattering (SERS) nanostructured substrates for their potential medical and analytical application such as biosensing and bioimaging. In this work, 5‐nm silver films deposited on nanostructured Al and Al2O3 templates are investigated as substrates for SERS. The chosen templates show different honeycomb nanostructures with two sets of dimension, i.e. pore diameter of ca. 25 and 50 nm and interpore distance of ca. 56 and 100 nm. The SERS imaging results reveal that the signal of the probe molecule (4‐thiazolidinone‐2‐thione) is distributed inhomogeneously on the substrate surface, and this fact is correlated with the morphology of nanostructures determined by atomic force microscopy. The variation of SERS intensity among the substrates is strongly correlated with the shape and size of potential SERS‐active sites, e.g. nanocups and nanopores. The strongest SERS response is found for the Ag/Al2O3 template anodized in sulfuric acid, which represents the nanopore array with the smallest dimensions (e.g. pore diameter, interpore distance etc.). Furthermore, depending on size and nanostructure shape, changes in the adsorption mechanism of the probe molecule are observed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A tubular array of TiO2 nanotubes on Ti matrix was used as a support for Ag or Cu sputter‐deposited layers intended for surface‐enhanced Raman scattering (SERS) investigations. The composite samples of Ag/TiO2–nanotube/Ti and Cu/TiO2–nanotube/Ti were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) [and scanning Auger microscopy (SAM)] to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured after it had been adsorbed on the TiO2–nanotube/Ti substrates covered with thin Ag or Cu deposit as well as on the bulk electrochemically roughened Ag or Cu reference substrates. It was found that the SERS spectra measured for pyridine adsorbed on the bulk silver substrate were significantly different than the spectra measured on the TiO2–nanotube/Ti substrates covered the Ag layer. The spectra measured for pyridine adsorbed on the Ag/TiO2–nanotube/Ti suggest that on the surface of such a composite substrate there are many Lewis acidic sites. Spectra typical for pyridine adsorbed on acidic sites were observed even after deposition of a relatively thick silver layer (e.g. an Ag layer with an average thickness of 80 nm) on the TiO2–nanotube/Ti support. Our findings suggest that TiO2–nanotube/Ti support is a promising substrate for the preparation of metallic nano‐clusters on a support containing acidic active sites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Silver nanoparticles (Ag NPs) enjoy a reputation as an ultrasensitive substrate for surface‐enhanced Raman spectroscopy (SERS). However, large‐scale synthesis of Ag NPs in a controlled manner is a challenging task for a long period of time. Here, we reported a simple seed‐mediated method to synthesize Ag NPs with controllable sizes from 50 to 300 nm, which were characterized by scanning electron microscopy (SEM) and UV–Vis spectroscopy. SERS spectra of Rhodamine 6G (R6G) from the as‐prepared Ag NPs substrates indicate that the enhancement capability of Ag NPs varies with different excitation wavelengths. The Ag NPs with average sizes of ~150, ~175, and ~225 nm show the highest SERS activities for 532, 633, and 785‐nm excitation, respectively. Significantly, 150‐nm Ag NPs exhibit an enhancement factor exceeding 108 for pyridine (Py) molecules in electrochemical SERS (EC‐SERS) measurements. Furthermore, finite‐difference time‐domain (FDTD) calculation is employed to explain the size‐dependent SERS activity. Finally, the potential of the as‐prepared SERS substrates is demonstrated with the detection of malachite green. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Diacetylene monomer containing p-nitrophenyl azobenzene moiety (NADA) was synthesized. Silver nanoparticles with different concentrations were adulterated in the above polymerized NADA (PNADA) films and the third-order nonlinear optical properties were investigated in detail. UV–vis spectra and transmission electron microscopy were used to confirm the formation of PNADA/Ag nanocomposite films. The silver nanoparticles (average size of 10 nm) were well dispersed in the polymer films. The value of the nonlinear refractive index n 2 for PNADA films (8.48×10−15 cm2/W) was much higher than that of pure polydiacetylene films. Further, the introduction of silver nanoparticles into the PNADA polymer films led to the further enhancement of nonlinear optical properties. The maximum value of n 2 for PNADA/Ag nanocomposite films could be 11.6×10−15 cm2/W. This enhancement should be ascribed to the surface plasmon resonance of silver nanoparticles.  相似文献   

20.
A comparative study of molecular structures of five L ‐proline (L ‐Pro) phosphonodipeptides: L ‐Pro‐NH‐C(Me,Me)‐PO3H2 (P1), L ‐Pro‐NH‐C(Me,iPr)‐PO3H2 (P2), L ‐Pro‐L ‐NH‐CH(iBu)‐PO3H2 (P3), L ‐Pro‐L ‐NH‐CH(PA)‐PO3H2 (P4) and L ‐Pro‐L ‐NH‐CH(BA)‐PO3H2 (P5) has been carried out using Raman and absorption infrared techniques of molecular spectroscopy. The interpretation of the obtained spectra has been supported by density functional theory calculations (DFT) at the B3LYP; 6–31 + + G** level using Gaussian 2003 software. The surface‐enhanced Raman scattering (SERS) on Ag‐sol in aqueous solutions of these phosphonopeptides has also been investigated. The surface geometry of these molecules on a silver colloidal surface has been determined by observing the position and relative intensity changes of the Pro ring, amide, phosphonate and so‐called spacer (−R) groups vibrations of the enhanced bands in their SERS spectra. Results show that P4 and P5 adsorb onto the silver as anionic molecules mainly via the amide bond (∼1630, ∼1533, ∼1248, ∼800 and ∼565 cm−1), Pro ring (∼956, ∼907 and ∼876 cm−1) and carboxylate group (∼1395 and ∼909 cm−1). Coadsorption of the imine nitrogen atom and PO group with the silver surface, possibly by formation of a weaker interaction with the metal, is also suggested by the enhancement of the bands at 1158 and 1248 cm−1. P1, P2 and P3 show two orientations of their main chain on the silver surface resulting from different interactions of the  C CH3,  NH and  CONH fragments with this surface. Bonding to the Ag surface occurs mainly through the imino atom (1166 cm−1) for P2, while for P1 and P3 it occurs via the methyl group(s) (1194–1208 cm−1). The amide group functionality (CONH) is practically not involved in the adsorption process for P1 and P2, whereas the Cs P bonds do assist in the adsorption. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号