共查询到20条相似文献,搜索用时 15 毫秒
1.
SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes 下载免费PDF全文
Xiao-Lei Zhang 《中国物理 B》2022,31(7):77401-077401
A two-dimensional (2D) surface-enhanced Raman scattering (SERS) substrate is fabricated by decorating carbon nanotube (CNT) films with Ag nanoparticles (AgNPs) in different sizes, via simple and low-cost chemical reduction method and self-assembling method. The change of Raman and SERS activity of carbon nanotubes/Ag nanoparticles (CNTs/AgNPs) composites with varying size of AgNPs are investigated by using rhodamine 6G (R6G) as a probe molecule. Meanwhile, the scattering cross section of AgNPs and the distribution of electric field of CNTs/AgNPs composite are simulated through finite difference time domain (FDTD) method. Surface plasmon resonance (SPR) wavelength is redshifted as the size of AgNPs increases, and the intensity of SERS and electric field increase with AgNPs size increasing. The experiment and simulation results show a Raman scattering enhancement factor (EF) of 108 for the hybrid substrate. 相似文献
2.
Li CM Robertson IM Jenkins ML Hutchison JL Doole RC 《Micron (Oxford, England : 1993)》2005,36(1):9-15
The nucleation, growth, and coalescence of silver oxide nanoparticles have been investigated dynamically and at high spatial resolution by using the electron beam of a transmission electron microscope to stimulate and to observe the processes. Under the assumption the particles are hemispherical, the growth rate was found to be proportional to the square root of the electron irradiation time. This result suggests that the rate-limiting step is the attachment of atoms to the nanoparticles. Growth of the nanoparticles occurred by the addition of columns of atoms on {111} planes. Particle impingement resulted in interpenetration of the particles and, ultimately, the formation of a grain boundary. 相似文献
3.
Cristina Gellini Giuseppina Sabatino Anna Maria Papini Maurizio Muniz‐Miranda 《Journal of Raman spectroscopy : JRS》2014,45(6):418-423
Surface‐enhanced Raman scattering has been employed to characterize the adsorption of an oligopeptide containing histidine residues on colloidal nanoparticles of metals as Ag and Cu obtained by laser ablation. The title molecule consists of two histidine and glycine residues alternating along the chain and terminating with an acetyl on one side and an amide group on the other. Histidine residues are found to act as docking sites of the molecule to the surface of the metal nanoparticles. Semiempirical parameterized model number 3 (PM3) calculations performed on molecule/metal model complexes suggest possible different adsorption geometries depending on the metallic substrate. This investigation could provide useful information to address the interaction of protein systems with metal ions, which is often related to fundamental biological process in living systems and can play an important role in different neuropathological diseases. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
4.
Leandro M. S. Takata Augusto C. Gonalves Rmulo A. Ando Alcindo A. Dos Santos Pedro H. C. Camargo 《Journal of Raman spectroscopy : JRS》2012,43(6):712-717
This paper describes a surface‐enhanced Raman scattering (SERS) systematic investigation regarding the functionalization of gold (Au) and silver (Ag) nanoparticles with diphenyl dichalcogenides, i.e. diphenyl disulfide, diphenyl diselenide, and diphenyl ditelluride. Our results showed that, in all cases, functionalization took place with the cleavage of the chalcogen–chalcogen bond on the surface of the metal. According to our density functional theory calculations, the molecules assumed a tilted orientation with respect to the metal surface for both Au and Ag, in which the angle of the phenyl ring relative to the metallic surface decreased as the mass of the chalcogen atom increased. The detected differences in the ordinary Raman and SERS spectra were assigned to the distinct stretching frequencies of the carbon–chalcogen bond and its relative contribution to the ring vibrational modes. In addition, the SERS spectra showed that there was no significant interaction between the phenyl ring and the surface, in agreement with the tilted orientation observed from our density functional theory calculations. The results described herein indicate that diphenyl dichalcogenides can be successfully employed as starting materials for the functionalization of Au nanoparticles with organosulfur, organoselenium, and organotellurium compounds. On the other hand, diphenyl disulfide and diphenyl diselenide could be employed for the functionalization of Ag nanoparticles, while the partial oxidation of the organotellurium unit could be detected on the Ag surface. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
5.
To increase the sensitivity in surface‐enhanced Raman scattering (SERS) measurement, a three‐dimensional (3D) SERS substrate was prepared by the decoration of silver nanoparticles (AgNPs) on the side walls of ZnO nanowires. The prepared 3D SERS substrates provide the advantages of highly loaded density of AgNPs, with a large specific surface area to interact with analytes, and the ease for the analytes to access the surfaces of AgNPs. To prepare the substrates, ZnO nanowires were first grown on a glass plate by wet chemical method. By treating SnCl2 on the surfaces of ZnO nanowires, Ag seeds could be formed on the side wall of the ZnO nanowires, which were further grown to a suitable size for SERS measurements via photochemical reduction. To optimize and understand the influences of the parameters used in preparation of the substrates, the reaction conditions were systematically adjusted and examined. Results indicated that AgNPs could be successfully decorated on the side wall of the ZnO nanowires only by the assistances of SnCl2. The size and density of AgNPs were affected by both the concentration of silver nitrate and the irradiation time. With optimized condition, the prepared 3D substrates provided an enhancement factor approaching 7 orders of magnitude compared with conventional Raman intensity. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
6.
Shaochun Tang 《Applied Surface Science》2010,256(8):2654-2649
The in situ reduction growth of Ag nanoparticles (NPs) on unmodified polystyrene (PS) spheres is investigated via controlling Ag nucleation and growth rates by continuous dripping addition of reductant solution in the absence of surfactants. The sub-micro PS spheres were coated by a uniform coverage of Ag NPs with several shapes like elongated islands, spherical particles, and particle aggregates. The reaction temperature and reductant concentration are demonstrated to influence the crystal structure, distribution, and stability of the Ag NPs on the PS substrates. The heterogeneous nucleation and growth of Ag NPs on PS spheres are found to depend on the inhibition of in-solution reduction and homogeneous nucleation. 相似文献
7.
Raman, surface-enhanced Raman scattering, and shell isolated nanoparticles-enhanced Raman scattering techniques were used to study the indigo–nanoparticle interaction nature. Silver nanoparticles were employed with and without a silicon dioxide spacer inert layer. The SERS spectral profile, obtained using silver nanoparticles, is different from the Raman one, which led to the proposition that the indigo–silver interaction is in the range of intermolecular interactions. SERS spectral reproducibility suggests identical organization and orientation of the analyte on the metal surface. The shell isolated nanoparticles enhanced Raman scattering spectrum of indigo, obtained by using silicon dioxide coated silver nanoparticles resulted similar to its Raman spectrum. This result indicates that the indigo structure is chemically unmodified by the silicon dioxide-coated silver surface. From the shell-isolated nanoparticles-enhanced Raman scattering experiments, the electromagnetic mechanism is proposed as the reason for the spectral enhancement. Theoretical calculations allow one to infer both the indigo–silver surface interaction nature and the orientation of indigo on the surface. 相似文献
8.
A method for the reproducible preparation of a silver colloid with strong surface‐enhanced Raman scattering (SERS) properties, good stability with a zeta potential of −55 mV and a shelf life exceeding 1 year is reported. The mean particle size is 20 nm with a narrow size distribution of 10–30 nm. The colloid is produced by the reduction of silver nitrate with hydroxylamine phosphate to give a negatively charged phosphate surface on the silver particles. This is an ultrafast room temperature reaction and with controlled rapid addition and dispersion of reagents, very reproducible batches of colloid can be prepared making it suitable for commercial applications of Surface enhanced resonance Raman scattering(SER(R)S) spectroscopy. The stability of the colloid is attributed to the extremely low solubility product (Ksp) of silver phosphate. Characterisation and stability study data for this colloid have been obtained by ultraviolet–visible spectroscopy, transmission electron microscopy, energy dispersive X‐ray spectroscopy, particle size analysis and SERS analyses using a 514 nm laser on a Raman spectrometer. A SERS method to detect and to identify riboflavin in a vitamin B complex tablet is reported to illustrate a SERS application based upon the use of this silver colloid. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
9.
Emilia Giorgetti Paolo Marsili Francesco Giammanco Silvana Trigari Cristina Gellini Maurizio Muniz‐Miranda 《Journal of Raman spectroscopy : JRS》2015,46(5):462-469
We studied the surface properties and reactivity of silver nanoparticles obtained by picosecond or nanosecond pulsed laser ablation in water and with 1064‐nm wavelength. Ultraviolet–visible spectroscopy results and subsequent modelling by Mie theory indicated the presence of an oxide layer on the nanoparticle surface, which favours the colloidal stability, but reduces the interaction with the environment. The oxide layer is also responsible for the reduced surface enhanced Raman spectroscopy (SERS) activity of these colloids with respect to those obtained by chemical reduction. However, SERS activation can be efficiently obtained by addition of chloride ions to the colloids, leading to SERS enhancement factors that are comparable with those of the chemically prepared counterparts. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
Xu Dong Jianfeng Zhou Xiaoyun Liu Danli Lin Liusheng Zha 《Journal of Raman spectroscopy : JRS》2014,45(6):431-437
In this study, monodisperse bimetallic nanorods with gold (Au) nanorod core and silver (Ag) shell (Au@AgNRs) were synthesized through seed‐mediated growth process by reduction of AgNO3 using Au nanorods with narrow size and shape distribution as seeds. With increasing the used amount of AgNO3, the Ag shell thickness of their lateral facets is raised faster than that of their two tips, leading to a decrease of their aspect ratios. Four plasmon bands are observable on the extinction spectra of Au@AgNRs, which are attributed to the longitudinal dipolar plasmon mode, transverse dipolar plasmon mode, and octupolar plasmon mode of the core‐shell structured bimetallic nanorods, respectively. As their Ag shell thickness increases, their longitudinal plasmon band blue‐shifts notably with the transverse plasmon band blue‐shifting and the two octupolar plasmon bands red‐shifting slightly, due to the decrease of their aspect ratios and enhancement of Ag plasmon resonance contribution. When used as surface‐enhanced Raman scattering (SERS) substrate for probing minute amounts of 4‐mercaptobenzoic acid in aqueous solution, Au@AgNRs have much stronger SERS activity than Au nanorods, and the obtained Raman signals are highly reproducible arising from their excellent monodispersity. Their SERS activity is remarkably increased with their Ag shell thickness thanks to the enhancing surface electric field and the chemical enhancement associated with electronic ligand effect. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
11.
Yong‐Hyok Kwon Kay Sowoidnich Heinar Schmidt Heinz‐Detlef Kronfeldt 《Journal of Raman spectroscopy : JRS》2012,43(8):1003-1009
The characteristics of the sol–gel matrix embedding Ag nanoparticles functionalized with 25,27‐dimercaptoacetic acid‐26,28‐dihydroxy‐4‐tert‐butylcalix[4]arene (DMCX) suitable for the in situ detection of polycyclic aromatic hydrocarbons (PAHs) in seawater is presented. The DMCX‐functionalized silver nanoparticles were produced by the thermal reduction method in xerogel film. The silver colloid blocks were formed in the sol–gel matrix, with a diameter ranging from 50 to 120 nm. DMCX forming the monolayer on the silver nanoparticle surface contributes to the surface‐enhanced Raman scattering (SERS) activity due to the aggregation of silver nanoparticles and the preconcentration of PAH molecules within the zone of electromagnetic enhancement. When selected, PAH molecules e.g. pyrene and naphthalene were adsorbed onto the SERS substrate; Raman band positions of PAH were slightly shifted. A calibration procedure reveals that this type of SERS substrate has a limit of detection of 3 × 10−10 mol/l for pyrene and 13 × 10−9 mol/l for naphthalene in artificial seawater. The Raman signal response on a pyrene concentration change in artificial seawater was evaluated using a 671‐nm Raman setup with a flow‐through cell. This type of SERS substrate will be suitable for the in situ trace detection of pollutant chemicals in seawater. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
12.
Edyta Proniewicz Prompong Pienpinijtham Yukihiro Ozaki Younkyoo Kim Leonard M. Proniewicz 《Journal of Raman spectroscopy : JRS》2013,44(1):55-62
Neurotensin (NT) is a naturally occurring neurotransmitter that mediates the metabotropic seven‐transmembrane G protein‐coupled receptors, namely NTR1s, richly expressed on tumor surface. Therefore, mutated active molecular fragments of NT that possess selective antagonist or weak agonist properties and the high affinity to NTR1 have attracted considerable interest for use in thrombus, inflammation, and imaging/treatment of tumors. In this work, SERS spectra of three N‐terminal fragments of human NT (NT1‐6, NT1‐8, and NT1‐11) and six specifically mutated C‐terminal fragments of human NT, including NT8‐13, [Dab9]NT8‐13, [Lys8,Lys9]NT8‐13, [Lys8‐(®)‐Lys9]NT8‐13, [Lys9,Trp11,Glu12]NT8‐13, and NT9‐13, adsorbed onto nanometer‐sized colloidal silver particles in an aqueous solution at pH level of the solution 2 are presented. A comparison was made between the structures of the native and mutated fragments to determine how changes in peptide length and mutations of the structure influenced the NT adsorption properties. Based on the interpretation of the obtained data, we showed that all of the investigated NT fragments, excluding [Lys9,Trp11,Glu12]NT8‐13, tended to adsorb on the silver surface mainly through the L‐tyrosine residue and the carboxylate group. The Tyr ring lied more‐or‐less flat on the silver surface. The hydrogen atom from the phenol group dissociated upon binding. On the other hand, [Lys9,Trp11,Glu12]NT8‐13 bound to this substrate through the close to vertical co‐pyrrole ring of the indole ring (Trp11) and –COO‐ . Comparison of the presented data with those obtained earlier for NT allows to suggest that in the case of naturally occurring neurotensin, both Tyr residues together with the carboxylate group play crucial role in the binding to the nanometer‐sized colloidal silver particles. This geometry of binding forces the NT molecule to lay flat on the surface. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
13.
S. Kawabata N. Ishikawa M. Mitsui A. Nakajima 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2007,43(1-3):155-158
Uniform-sized silver nanoparticles with average diameter of 13.7 nm have been prepared in the gas-phase by combining a pulsed
laser ablation method
with a low pressure-differential mobility analyzer (LP-DMA). By depositing
the silver nanoparticles onto a silicon substrate, a granular film
consisting of size-selected silver nanoparticles has been fabricated and its
morphology and electronic properties have been examined using transmission
electron microscopy (TEM) and UV-visible absorption spectroscopy. This
granular silver film serves as a highly active substrate for
surface-enhanced Raman scattering (SERS). 相似文献
14.
Severe interference from the oxidation and laser carbonization was encountered in the measurements of surface‐enhanced Raman scattering (SERS) spectra of pyridoxine (PN) on the roughened gold electrode. However, we found that high‐quality SERS spectra of PN could be obtained by the introduction of SnCl2, which only has few Raman peaks at low wavenumbers. SnCl2, as a good reductive, is capable of removing the oxidative species on the gold substrate and the dissolved oxygen in solution, and as a result lowering the open circuit potential (OCP). Sn(II) can also strongly chemically adsorb on the gold surface and interact with PN through coordination/chelation, such that not only to prevent PN from damage by the giant electromagnetic field for the ‘first‐layer’ effect, but also to give rise to very strong Raman scattering signals of PN where chemical enhancement plays an important role. Those are the main reasons for the elimination of the oxidation and decomposition of PN and for the high‐quality SERS spectra of PN. The way the SnCl2 confines PN within the enhanced electromagnetic field by its ability of adsorption and coordination/chelation can be utilized to improve the routine SERS analysis of analogous type of reactive organic/biomolecules. In addition, this method has been successfully extended to the SERS measurements of PN on the substrates of roughened silver and copper. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
15.
Daniel Grasseschi Andre L. A. Parussulo Vitor M. Zamarion Robson R. Guimares Koiti Araki Henrique E. Toma 《Journal of Raman spectroscopy : JRS》2014,45(9):758-763
A dicarboxybipyridine‐trimercaptotriazine ruthenium complex, primarily designed for dye solar cells, has been successfully employed for generating electrostatically stabilized gold colloids, because of its high negative charge and capability of binding to gold nanoparticles via the sulfur groups. Surprisingly, a strong surface‐enhanced Raman scattering enhancement has been observed for the isolated nanoparticles, exceeding those recorded after inducing agglomeration. Such unusual response has been ascribed to the predominant contribution of the charge‐transfer and resonance Raman mechanisms, more than compensating for the lack of the local hot spots, in relation to the agglomerated systems. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
16.
Gengshen Hu Difei Han Guoqing Jia Tao Chen Zhaochi Feng Can Li 《Journal of Raman spectroscopy : JRS》2009,40(4):387-393
The adsorption of trimethyl phosphine (TMP) on colloidal silver has been investigated by means of surface‐enhanced Raman scattering spectroscopy (SERS). On the basis of surface selection rules, it is deduced from the SERS results that TMP adsorbs on silver surface via its P atom. The electron donor effect of TMP can be sensitively probed by the coadsorbed SCN−. The Raman wavenumber of νCN of the adsorbed SCN− shifts to lower wavenumbers when TMP is coadsorbed with SCN− and the red shift of C≡N stretching wavenumber is found to increase with increasing surface coverage of TMP. This could be explained in terms of the electron donor effect of TMP. Density functional theory (DFT) calculations further confirm the experimental results that the charge transfer is from TMP to silver surface rather than reversely. Natural bond orbital (NBO) analysis indicates that the red shift of C≡N stretching mode is due the increase of electronic populations of π* orbital of C≡N bond induced by coadsorbed TMP, consequently the C≡N bond is weakened, and the νCN shifts to lower wavenumbers. An NBO analysis also indicates that the conjugated effect between S atom and C≡N bond could easily make the charge transfer from silver surface to C≡N bond. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
17.
Hui Chu Haifeng Yang Shuangyan Huan Weiqi Lin Guoli Shen Ruqin Yu 《Journal of Raman spectroscopy : JRS》2007,38(3):295-300
The adsorption modes of 4‐amino‐3‐hydrazino‐5‐mercapto‐1,2,4‐trizole (purpald) self‐assembled monolayers (SAMs) formed on SERS‐active silver and gold electrodes were comparatively studied using surface‐enhanced Raman scattering (SERS), and the self‐assembling procedures were investigated by the Raman mapping technique. Purpald SAMs adopted a titled orientation with S, N2 atoms anchoring to the silver electrode and the N7H2 close to the surface, whereas purpald stood up on the gold electrode through S, N5 atoms and with N8H2 adjacent to the surface. The density functional theory (DFT) at the level of B3LYP was performed to help explain their different adsorption behaviors on the silver and gold electrodes. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
18.
Edyta Podstawka Andrzej Kudelski M. Drag J. Oleksyszyn Leonard M. Proniewicz 《Journal of Raman spectroscopy : JRS》2009,40(11):1578-1584
We investigated the interfacial structures of various aromatic (each compound contains one or two phenyls) di‐α‐amino ( L1 – L3 ) and α‐amino‐α‐hydroxyphosphinic ( L4 – L6 ) acids immobilized onto an electrochemically roughened silver electrode surface in an aqueous solution using surface‐enhanced Raman scattering (SERS). These structures were compared to those on a colloidal silver surface to determine the relationship between adsorption strength and geometry. The presence of an enhanced ν19a ring band in the SERS spectra of L6 , L2 , and L3 on the electrode indicated that the benzene rings of those molecules interact with the electrode surface through localized CC bond(s). We observed significant band broadening of the benzene ring modes for all α‐hydroxyphosphinic acids on both substrates, except for L1 deposited onto the electrode surface. This suggests the possibility of direct interaction between the ring and Ag, although the benzene ring–surface π overlap is weaker for the colloidal silver than for the Ag electrode. The downward shift in wavenumber and alternations in the enhancement of a ν12 ring band indicate a general increase of tilt angle on both silver substrates in the order L3 < L4 < L5 < L6 . The altered enhancement of the bands due to the vibrations of the NH2 and O PO fragments, a finding observed on both silver substrates, strongly suggests that the groups interact with different strength and geometry with these substrates. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
19.
Weidong Ruan Yinqiu Cui Feng Lin Tieli Zhou Ge Hui Ye Wang Yufeng Chen Fei Lu Jie Guo Bing Zhao 《Journal of Raman spectroscopy : JRS》2015,46(11):1117-1123
The Ag–Au compound nanostructure films with controllable patterns of Ag nanoparticle (NP) aggregates were fabricated. A strategy of two‐step synthesis was employed toward the target products. Firstly, the precursor Au NP (17 nm) films were synthesized as templates. Secondly, the Ag NPs (45 nm) were deposited on the precursor films. Three types of Ag NP aggregates were obtained including discrete Ag NPs (discrete type), necklace‐like Ag NP aggregates (necklace type), and huddle‐like Ag NP aggregates (huddle type). The surface‐enhanced Raman scattering (SERS) property was studied on these nanostructures by using the probing molecule of rhodamine 6G under the excitation laser of 514.5 nm. Interestingly, the different types of samples showed different enhancement abilities. A statistical method was employed to assess the enhancement. The relative enhancement factor for each Ag NP was estimated quantitatively under the ratio of 1 : 25 : 18 for the discrete‐type, necklace‐type, and huddle‐type samples at the given concentration of 10−8 mol/l. This research shows that the enhancement ability of each Ag NP is dependent on the aggregate morphology. Moreover, the different enhancement abilities displayed different limit detection concentrations up to 10−8, 10−11, and 10−9 mol/l, separately. The understanding of the relationship between the defined nanostructures and the SERS enhancement is very meaningful for the design of new SERS substrates with better performance. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
20.
Alessandro Virga Paola Rivolo Emiliano Descrovi Alessandro Chiolerio Gabriella Digregorio Francesca Frascella Marco Soster Federico Bussolino Serena Marchi Francesco Geobaldo Fabrizio Giorgis 《Journal of Raman spectroscopy : JRS》2012,43(6):730-736
Ag nanoparticles synthesized on porous silicon samples were studied and applied as substrates for surface‐enhanced Raman scattering (SERS). The metallic nanostructures prepared by immersion plating were characterized by UV–Vis reflectance spectroscopy and scanning electron microscopy. SERS activity of the substrates was tested using Cyanine dye 1,3,3,1′,3′,3′‐esamethyl‐5,5′‐dimethoxyindodicarbocyanine iodide (Cy5‐OCH3) as a probe molecule. The Raman spectra obtained for different excitation wavelengths indicate amplifications ascribed to plasmonic resonances with an enhancement factor up to 107. CGIYRLRS peptides were chemisorbed on the Ag nanoparticles with the plasmonic resonance tuned at the excitation energy. Such oligopeptides were used as baits for a specific polyclonal antibody. The overall Raman enhancement allowed to evidence a good selectivity to the target analyte as required by most of the SERS applications on biological assays. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献