首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The field near a sharp metal tip can be strongly enhanced if irradiated with an optical field polarized along the tip axis. We demonstrate that the enhanced field gives rise to local second-harmonic (SH) generation at the tip surface thereby creating a highly confined photon source. A theoretical model for the excitation and emission of SH radiation at the tip is developed and it is found that this source can be represented by a single on-axis oscillating dipole. The model is experimentally verified by imaging the spatial field distribution of strongly focused laser modes.  相似文献   

2.
We present a near-field optical technique for second-harmonic imaging by use of tapered optical fiber tips externally illuminated with femtosecond laser pulses. Enhancement of the electric field at the tip of the fiber results in enhanced second-harmonic (SH) generation from the sample region near the tip. This SH emission is collected by the same tapered fiber. The spatial distribution and polarization properties of SH generation from thin ferroelectric films and a poled single crystal of BaTiO(3) have been studied. A spatial resolution of the order of 80 nm was achieved. Symmetry properties of the near-field SH signal allow us to recover the local poling direction of individual ferroelectric domains in the film. Thus the technique provides a novel tool for nanometer-scale crystal analysis of polycrystalline samples.  相似文献   

3.
Effects of a longitudinal magnetic field on optical spin injection and detection in InAs/GaAs quantum dot (QD) structures are investigated by optical orientation spectroscopy. An increase in the optical and spin polarization of the QDs is observed with increasing magnetic field in the range 0-2?T, and is attributed to suppression of exciton spin depolarization within the QDs that is promoted by the hyperfine interaction and anisotropic electron-hole exchange interaction. This leads to a corresponding enhancement in spin detection efficiency of the QDs by a factor of up to 2.5. At higher magnetic fields, when these spin depolarization processes are quenched, the electron spin polarization in anisotropic QD structures (such as double QDs that are preferably aligned along a specific crystallographic axis) still exhibits a rather strong field dependence under non-resonant excitation. In contrast, such a field dependence is practically absent in more 'isotropic' QD structures (e.g.?single QDs). We attribute the observed effect to stronger electron spin relaxation in the spin injectors (i.e.?wetting layer and GaAs barriers) of the lower-symmetry QD structures, which also explains the lower spin injection efficiency observed in these structures.  相似文献   

4.
The effect of electric field on exciton states and optical properties in zinc-blende (ZB) InGaN/GaN quantum dot (QD) are investigated theoretically in the framework of effective-mass envelop function theory. Numerical results show that the electric field leads to a remarkable reduction of the ground-state exciton binding energy, interband transition energy, oscillator strength and linear optical susceptibility in InGaN/GaN QD. It is also found that the electric field effects on exciton states and optical properties are much more obvious in QD with large size. Moreover, the ground-state exciton binding energy and oscillator strength are more sensitive to the variation of indium composition in InGaN/GaN QD with small indium composition. Some numerical results are in agreement with the experimental measurements.  相似文献   

5.
采用稳态和时间分辨发光光谱,研究了生长在p-i-n二极管结构内的InAs单量子点发光光谱的电场调谐特性.随着电场强度的增加,观察到量子点中激子发光的Stark 效应.通过选择不同波长的激光线激发量子点样品,发现随着电场强度的增加导致量子点发光强度的减弱,这是由于量子点俘获载流子概率的减小所致,而激子寿命的增加源于电场导致激子的Stark效应. 关键词: InAs单量子点 Stark效应 电子-空穴分离  相似文献   

6.
We report on optical spectroscopy of self-assembled InAs quantum dots in a magnetic field. We describe how we measure the emission characteristics of a single quantum dot (QD) in high magnetic fields at low temperature using a miniature, fiber-based confocal microscope. Example results are presented on a QD whose charge can be controlled using a field-effect device. For the uncharged, singly and doubly charged excitons we find a diamagnetism and the spin Zeeman effect. In contrast, for the triply-charged exciton we find a fundamentally different behavior. Anti-crossings in magnetic field imply that confined states of the QD are hybridized with Landau-like levels associated with the two-dimensional continuum.  相似文献   

7.
We theoretically investigate the refractive index (RI) changes in an asymmetric quantum dot (QD) underlying an external static magnetic field. We obtain the confined wave functions and energies of an electron in QD by the effective-mass approximation. Using the compact-density-matrix approach and iterative method, we obtain the analytical expressions of linear, nonlinear and total RI changes. The results of numerical calculations for the typical GaAs/AlGaAs QD show that the RI changes are sensitive to the parameters of the asymmetric potential and incident optical intensity. Moreover, the resonance peaks of the RI changes shift with the value of magnetic field B or the radius of the QD changing.  相似文献   

8.
We perform numerical simulation of the Coulomb blockade microscopy on single and double quantum dots (QDs) weakly coupled to the reservoirs of the two-dimensional electron gas. The model describes the screening of the Coulomb charge at the tip of the atomic force microscope by deformation of the electron gas in the QD and in the reservoirs by a self-consistent iteration of DFT equations for the coupled subsystems. We discuss the reaction of the electrons to the tip and the shape of the effective tip potential, which in general becomes short range, strongly dependent on the tip position and asymmetric with a longer tail at the side of the QD. We determine the ground state under influence of the charged probe and obtain charge stability maps of QD as functions of the tip position. We evaluate the charging lines and compare them with the ones obtained for the perturbative conditions for which the charge density is assumed unaffected by the tip.  相似文献   

9.
One of the remarkable properties of the II–VI diluted magnetic semiconductor (DMS) quantum dot (QD) is the giant Zeeman splitting of the carrier states under application of a magnetic field. This splitting reveals strong exchange interaction between the magnetic ion moment and electronic spins in the QD. A theoretical study of the electron spectrum and of its relaxation to the ground state via the emission of a longitudinal optical (LO) phonon, in a CdSe/ZnMnSe self-assembled quantum dot, is proposed in this work. Numerical calculations showed that the strength of this interaction increases as a function of the magnetic field to become more than 30 meV and allows some level crossings. We have also shown that the electron is more localized in this DMS QD and its relaxation to the ground state via the emission of one LO phonon is allowed.  相似文献   

10.
We report the first experimental study of the optical Stark effect in single semiconductor quantum dots (QD). For below band gap excitation, two-color pump-probe spectra show dispersive line shapes caused by a light-induced blueshift of the excitonic resonance. The line shape depends strongly on the excitation field strength and is determined by the pump-induced phase shift of the coherent QD polarization. Transient spectral oscillations can be understood as rotations of the QD polarization phase with negligible population change. Ultrafast control of the QD polarization is demonstrated.  相似文献   

11.
An exciton in a disc-like quantum dot (QD) with the parabolic confinement, under applied electric field, is studied within the framework of the effective-mass approximation. The nonlinear optical rectification between the ground and the first-excited states has been examined through the computed energies and wave functions in details for the excitons. The results show that the optical rectification susceptibility obtained in a disc-like QD reach the magnitude of 10−2 m/V, which is 3-4 orders of magnitude higher than in one-dimensional QDs. It is found that the second-order nonlinear optical properties of exciton states in a QD are strongly affected by the confinement strength and the electric field.  相似文献   

12.
We present a scheme for remotely addressing single quantum dots (QDs) by means of near-field optical microscopy that simply makes use of the polarization of light. A structure containing self-assembled CdTe QDs is covered with a thin metal film presenting sub-wavelength holes. When the optical tip is positioned some distance away from a hole, surface plasmons in the metal coating are generated which, by turning the polarization plane of the excitation light, transfer the excitation towards a chosen hole and induce emission from the underlying dots. In addition, our procedure gives valuable insight into the diffusion of photo-excited carriers in the QD plane that can put limits to the addressing scheme.  相似文献   

13.
We propose a method of frequency and phase control of optical bistability in a unidirectional ring cavity containing a semiconductor structure which is characterized as a ladder three-level system. The system interacts with a coherent probe field, and a control field which consists of a strong coherent field and a weak amplitude-fluctuating stochastic field. A perturbative solution of the master equation of the system allows to eliminate the stochastic field and provides a physical picture in terms of correlation properties of the stochastic field. We find that the bistable response can be modified strongly by means of the amplitude, the frequency and the phase of the stochastic field. In order to illustrate the feasibility of the results, we use parameter values corresponding to an semiconductor quantum dot (QD). This investigation may be used to optimize and control the optical switching process in the QD solid-state system, which is much more practical than that in atomic systems.  相似文献   

14.
Within the framework of the effective mass approximation, the confined Franz–Keldysh effect is investigated theoretically in a cylindrical ZnO quantum dot (QD). Numerical results show that the application of an electric field can decrease the strength and the threshold energy of the optical absorption coefficient in ZnO QD. There are additional oscillations in the absorption above the effective band gap, which are due to the Franz–Keldysh effect which occurs in the presence of the electric field. Our results also show that the electric field has a more obviously influence on the optical absorption in cylindrical ZnO QD with larger dot height.  相似文献   

15.
An investigation of the nonlinear optical rectification of a hydrogenic impurity, which is in a two-dimensional disc-like quantum dot (QD) with parabolic confinement potential, has been performed by using the perturbation method in the effective mass approximation. Both the electric field and the confinement effects on the energy are investigated in detail. The results are presented as a function of the incident photon energy for the different values of the confinement strength and the electric field. It is found that the nonlinear optical properties of hydrogenic impurity states in a disc-like QD are strongly affected by the confinement strength and the electric field.  相似文献   

16.
We present a theoretical study of the optical properties of GaInNAs quantum dot (QD) structures, emitting at 1.55 µm wavelength. The theoretical model is based on a 10 × 10 k · p band-anti-crossing Hamiltonian, incorporating valence, conduction and nitrogen-induced bands. We have investigated the influence of the nitrogen to the conduction band mixing, and piezoelectric field on the ground state optical matrix element. For QDs grown on GaAs substrate with a reduced amount of indium and an increased amount of nitrogen in the QD the e x polarized optical matrix element becomes on the average larger and less sensitive to the variation of both the QD shape and size than is the case of an InNAs QD. For the QD grown on InP substrate the dominant optical dipole matrix element is of the e z light polarization. Our results identify the specific In and N content in the QDs required for optimal long-wavelength emission on both substrates.  相似文献   

17.
We investigate ultrafast gain-dynamics in a quantum-dot (QD) semiconductor optical amplifier where two-photon absorption (TPA) occurs in the bulk region of the waveguide during propagation of a sub-picosecond optical pulse, and gain bleaching occurs in the QD active region. Our calculation reveals that TPA provides optical pumping which is quasi-synchronous in time and space with QD carrier depletion, leading to enhancement of carrier capture into the QDs on an ultrafast timescale. The TPA-induced optical pumping, which is qualitatively different from electrical pumping, changes qualitatively carrier recovery dynamics, reducing pattern effects when a train of optical pulses is injected at the ultra-high speed. PACS 85.60.Bt; 42.79.-e; 07.60.-j  相似文献   

18.
Within the framework of the effective-mass approximation, the exciton states confined in wurtzite ZnO/MgZnO quantum dot (QD) are calculated using a variational procedure, including three-dimensional confinement of carriers in the QD and the strong built-in electric field effect due to the piezoelectricity and spontaneous polarizations. The exciton binding energy and the electron-hole recombination rate as functions of the height (or radius) of the QD are studied. Numerical results show that the strong built-in electric field leads to a remarkable electron-hole spatial separation, and this effect has a significant influence on the exciton states and optical properties of wurtzite ZnO/MgZnO QD.  相似文献   

19.
A tunable microcavity device composed of optical polymer and Si with a colloidal quantum dot (QD) is proposed as a single-photon source for planar optical circuit. Cavity size is controlled by electrostatic micromachine behavior with the air bridge structure to tune timing of photon injection into optical waveguide from QD. Three-dimensional positioning of a QD in the cavity structure is available using a nanohole on Si processed by scanning probe microscope lithography. We fabricated the prototype microcavity with PbS-QD-mixed polymenthyl methacrylate on a SOI (semiconductor-on-insulator) substrate to show the tunability of cavity size as the shift of emission peak wavelength of QD ensemble.  相似文献   

20.
The linear and nonlinear optical properties in a three-dimensional anisotropic quantum dot subjected to a uniform magnetic field directed with respect to the z-axis have been investigated within the compact-density matrix formalism and the iterative method. The dependence of the linear and nonlinear optical properties on the characteristic frequency of the parabolic potential, on the magnetic field, and on the incident optical intensity is studied in detail. Moreover, taking into account the position-dependent effective mass, the dependence of the linear and nonlinear optical properties on the dot radius is investigated. The results show that the optical absorption coefficients (ACs) and refractive index (RI) changes of the anisotropic quantum dot (QD) are strongly affected by these factors, and the position effect also plays an important role in the optical ACs and RI changes of the anisotropic QD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号