首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The research of financial systemic risk is an important issue, however the research on the financial systemic risk in ASEAN region lacks. This paper uses the minimum density method to calculate the interbank network of ASEAN countries and uses the node centrality to judge the systemically important banks of various countries. Then the DebtRank algorithm is constructed to calculate the systemic risk value based on the interbank network. By comparing the systemic risk values obtained through the initial impact on the system important banks and non-important banks, we find that the systemic risk tends to reach the peak in the case of the initial impact on the system important banks. Furthermore, it is found that countries with high intermediary centrality and closeness centrality have higher systemic risk. It suggests that the regulatory authorities should implement legal supervision, strict supervision, and comprehensive supervision for key risk areas and weak links.  相似文献   

2.
This study uses hierarchical structure methods (minimal spanning tree (MST) and hierarchical tree (HT)) to examine the relationship between energy consumption and economic growth in a sample of 30 Asian countries covering the period 1971–2008. These countries are categorized into four panels based on the World Bank income classification, namely high, upper middle, lower middle, and low income. In particular, we use the data of electricity consumption and real gross domestic product (GDP) per capita to detect the topological properties of the countries. We show a relationship between electricity consumption and economic growth by using the MST and HT. We also use the bootstrap technique to investigate a value of the statistical reliability to the links of the MST. Finally, we use a clustering linkage procedure in order to observe the cluster structure. The results of the structural topologies of these trees are as follows: (i) we identified different clusters of countries according to their geographical location and economic growth, (ii) we found a strong relationship between energy consumption and economic growth for all income groups considered in this study and (iii) the results are in good agreement with the causal relationship between electricity consumption and economic growth.  相似文献   

3.
We use a simple model of distress propagation (the sandpile model) to show how financial systems are naturally subject to the risk of systemic failures. Taking into account possible network structures among financial institutions, we investigate if simple policies can limit financial distress propagation to avoid system-wide crises, i.e. to dampen systemic risk. We therefore compare different immunization policies (i.e. targeted helps to financial institutions) and find that the information coming from the network topology allows to mitigate systemic cascades by targeting just few institutions.  相似文献   

4.
The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007-2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance.  相似文献   

5.
Hopf insulators are intriguing three-dimensional topological insulators characterized by an integer topological invariant. They originate from the mathematical theory of Hopf fibration and epitomize the deep connection between knot theory and topological phases of matter, which distinguishes them from other classes of topological insulators. Here, we implement a model Hamiltonian for Hopf insulators in a solid-state quantum simulator and report the first experimental observation of their topological properties,including nontrivial topological links associated with the Hopf fibration and the integer-valued topological invariant obtained from a direct tomographic measurement. Our observation of topological links and Hopf fibration in a quantum simulator opens the door to probe rich topological properties of Hopf insulators in experiments. The quantum simulation and probing methods are also applicable to the study of other intricate three-dimensional topological model Hamiltonians.  相似文献   

6.
Predicting genes likely to be involved in human diseases is an important task in bioinformatics field. Nowadays, the accumulation of human protein-protein interactions (PPIs) data provides us an unprecedented opportunity to gain insight into human diseases. In this paper, we adopt the topological similarity in human protein-protein interaction network to predict disease-related genes. As a computational algorithm to speed up the identification of disease-related genes, the topological similarity has substantial advantages over previous topology-based algorithms. First of all, it provides a global measurement of similarity between two vertices. Secondly, quantity which can measure new topological feature has been integrated into the notion of topological similarity. Our method is specially designed for predicting disease-related genes of single disease-gene family. The proposed method is applied to human protein-protein interaction and hepatocellular carcinoma (HCC) data. The results show a significant enrichment of disease-related genes that are characterized by higher topological similarity than other genes.  相似文献   

7.
Non-Hermitian topological edge states have many intriguing properties, however, to date, they have mainly been discussed in terms of bulk–boundary correspondence. Here, we propose using a bulk property of diffusion coefficients for probing the topological states and exploring their dynamics. The diffusion coefficient was found to show unique features with the topological phase transitions driven by parity–time (PT)-symmetric non-Hermitian discrete-time quantum walks as well as by Hermitian ones, despite the fact that artificial boundaries are not constructed by an inhomogeneous quantum walk. For a Hermitian system, a turning point and abrupt change appears in the diffusion coefficient when the system is approaching the topological phase transition, while it remains stable in the trivial topological state. For a non-Hermitian system, except for the feature associated with the topological transition, the diffusion coefficient in the PT-symmetric-broken phase demonstrates an abrupt change with a peak structure. In addition, the Shannon entropy of the quantum walk is found to exhibit a direct correlation with the diffusion coefficient. The numerical results presented herein may open up a new avenue for studying the topological state in non-Hermitian quantum walk systems.  相似文献   

8.
王力  贾平  张叶  马天翔 《中国光学》2016,9(1):81-88
为了寻求应用于复杂地物条件下异源景象匹配的算法,使其满足尺度和旋转不变性,受视觉成像系统的启发,利用初始简图可以表征图像大部分信息的特点,提出了一种新的基于线段对的异源图像匹配算法。首先,提取并筛选图像中能够表征图像信息的线段;然后,利用线段自身信息及线段的相对位置关系构建线段对特征;接着,通过线段对之间的相似性对图像进行粗匹配;最后,利用线段之间的拓扑关系进行精匹配。实验表明,本文方法对具有旋转、缩放和平移变换的异源图像的匹配正确率达到了75%以上,运算时间是传统匹配算法的1/5左右,基本满足了异源景象匹配应用对算法实时性和准确性的要求。  相似文献   

9.
赖大荣  舒欣 《中国物理 B》2017,26(3):38902-038902
Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existence of a link between two nodes can be captured by nodes' similarity, several methods have been proposed to compute similarity directly or indirectly, with information on node degree. However, correctly predicting links is also crucial in revealing the link formation mechanisms and thus in providing more accurate modeling for networks. We here propose a novel method to predict links by incorporating stochastic-block-model link generating mechanisms with node degree. The proposed method first recovers the underlying block structure of a network by modularity-based belief propagation, and based on the recovered block structural information it models the link likelihood between two nodes to match the degree sequence of the network. Experiments on a set of real-world networks and synthetic networks generated by stochastic block model show that our proposed method is effective in detecting missing, spurious or evolving links of networks that can be well modeled by a stochastic block model. This approach efficiently complements the toolbox for complex network analysis, offering a novel tool to model links in stochastic block model networks that are fundamental in the modeling of real world complex networks.  相似文献   

10.
Since the last decade, minimal spanning trees (MSTs) have become one of the main streams in econophysics to filter the important information contained, for example, in stock networks. The standard practice to find an MST is by using Kruskal’s algorithm. However, it becomes slower and slower when the number of stocks gets larger and larger. In this paper we propose an algorithm to find an MST which has considerably promising performance. It is significantly faster than Kruskal’s algorithm and far faster if there is only one unique MST in the network. Our approach is based on the combination of fuzzy relation theory and graph theoretical properties of the forest of all MSTs. A comparison study based on real data from four stock markets and four types of simulated data will be presented to illustrate the significant advantages of the proposed algorithm.  相似文献   

11.
We study the four-state antiferromagnetic Potts model on the triangular lattice. We show that the model has six types of defects which diffuse and annihilate according to certain conservation laws consistent with their having a vector-valued topological charge. Using the properties of these defects, we deduce a (2+2)-dimensional height representation for the model and hence show that the model is equivalent to the three-state Potts antiferromagnet on the Kagomé lattice and to bond-coloring models on the triangular and honeycomb lattices. We also calculate critical exponents for the ground-state ensemble of the model. We find that the exponents governing the spin–spin correlation function and spin fluctuations violate the Fisher scaling law because of constraints on path length which increase the effective wavelength of the spin operator on the height lattice. We confirm our predictions by extensive Monte Carlo simulations of the model using the Wang–Swendsen–Kotecký cluster algorithm. Although this algorithm is not ergodic on lattices with toroidal boundary conditions, we prove that it is ergodic on lattices whose topology has no noncontractible loops of infinite order, such as the projective plane. To guard against biases introduced by lack of ergodicity, we perform our simulations on both the torus and the projective plane.  相似文献   

12.
We examine whether the relationship between market volatility and network properties in the low-frequency level can be applied to the high-frequency level. For the analysis, we use the minimum spanning tree (MST) method constructed from intraday Korean stock market data. The results show that the higher the market volatility is, the denser the MST of stocks becomes. The normalized tree length shows a strong negative relationship with market volatility, indicating that the distances between nodes are shorter when the market volatility is high. The mean occupation layer shows the tendency of having a smaller value in a higher volatility market. The maximum number of links becomes larger when the market volatility increases. All these network properties support the network being dense and shrinking in high market volatility conditions; that is, the degree of co-movement in financial market is reinforced in the intraday high-frequency level.  相似文献   

13.
Information networks such as the scientific literature and the Web have been studied extensively by different communities focusing on alternative topological properties induced by citation links, textual content, and semantic relationships. This paper reviews work that brings such different perspectives together in order to build better search tools and to understand how the Webs scale free topology emerges from author behavior. I describe three topologies induced by different classes of similarity measures, and outline empirical data that allows us to quantify and map their correlations. The data is also used to study a power law relationship between the content similarity between two documents and the probability that they are connected by citations or hyperlinks. Such finding has led to a remarkably powerful growth model for information networks, which simultaneously predicts the distribution of degree and the distribution of content similarity across pairs of documents -- Web pages connected by links and scientific articles connected by citations.Received: 26 February 2004, Published online: 14 May 2004PACS: 89.20.Hh World Wide Web, Internet - 89.75.-k Complex systems  相似文献   

14.
Two kinds of filtered networks: minimum spanning trees (MSTs) and planar maximally filtered graphs (PMFGs) are constructed from dynamical correlations computed over a moving window. We study the evolution over time of both hierarchical and topological properties of these graphs in relation to market fluctuations. We verify that the dynamical PMFG preserves the same hierarchical structure as the dynamical MST, providing in addition a more significant and richer structure, a stronger robustness and dynamical stability. Central and peripheral stocks are differentiated by using a combination of different topological measures. We find stocks well connected and central; stocks well connected but peripheral; stocks poorly connected but central; stocks poorly connected and peripheral. It results that the Financial sector plays a central role in the entire system. The robustness, stability and persistence of these findings are verified by changing the time window and by performing the computations on different time periods. We discuss these results and the economic meaning of this hierarchical positioning.  相似文献   

15.
We find numerical and empirical evidence for dynamical, structural and topological phase transitions on the (German) Frankfurt Stock Exchange (FSE) in the temporal vicinity of the worldwide financial crash. Using the Minimal Spanning Tree (MST) technique, a particularly useful canonical tool of the graph theory, two transitions of the topology of a complex network representing the FSE were found. The first transition is from a hierarchical scale-free MST representing the stock market before the recent worldwide financial crash, to a superstar-like MST decorated by a scale-free hierarchy of trees representing the market’s state for the period containing the crash. Subsequently, a transition is observed from this transient, (meta)stable state of the crash to a hierarchical scale-free MST decorated by several star-like trees after the worldwide financial crash. The phase transitions observed are analogous to the ones we obtained earlier for the Warsaw Stock Exchange and more pronounced than those found by Onnela–Chakraborti–Kaski–Kertész for the S&P 500 index in the vicinity of Black Monday (October 19, 1987) and also in the vicinity of January 1, 1998. Our results provide an empirical foundation for the future theory of dynamical, structural and topological phase transitions on financial markets.  相似文献   

16.
Based on the model of the same degree of all nodes we proposed before, a new algorithm, the so-called “spread all over vertices” (SAV) algorithm, is proposed for generating small-world properties from a regular ring lattices. During randomly rewiring connections the SAV is used to keep the unchanged number of links. Comparing the SAV algorithm with the Watts-Strogatz model and the “spread all over boundaries” algorithm, three methods can have the same topological properties of the small world networks. These results offer diverse formation of small world networks. It is helpful to the research of some applications for dynamics of mutual oscillator inside nodes and interacting automata associated with networks.  相似文献   

17.
The canonical covariant formalism (CCF) of the topological five-dimensional Chern–Simons gravity is constructed. Because this gravity model naturally contains a Gauss–Bonnet term, the extended CCF valid for higher curvature gravity must be used. In this framework, the primary constraint and the total Hamiltonian are found. By using the equations of the CCF, it is shown that the bosonic five-form which defines the total Hamiltonian is a first-class dynamical quantity strongly conserved. In this context the equations of motion are also analyzed. To determine the effective interactions of the model, the toroidal dimensional reduction of the five-dimensional Chern–Simons gravity is carried out. Finally the first-order CCF and the usual canonical vierbein formalism (CVF) are related and the Hamiltonian as generator of time evolution is constructed in terms of the first-class constraints of the coupled system.  相似文献   

18.
Systemic risk on different interbank network topologies   总被引:1,自引:0,他引:1  
In this paper we develop an interbank market with heterogeneous financial institutions that enter into lending agreements on different network structures. Credit relationships (links) evolve endogenously via a fitness mechanism based on agents’ performance. By changing the agent’s trust on its neighbor’s performance, interbank linkages self-organize themselves into very different network architectures, ranging from random to scale-free topologies. We study which network architecture can make the financial system more resilient to random attacks and how systemic risk spreads over the network. To perturb the system, we generate a random attack via a liquidity shock. The hit bank is not automatically eliminated, but its failure is endogenously driven by its incapacity to raise liquidity in the interbank network. Our analysis shows that a random financial network can be more resilient than a scale free one in case of agents’ heterogeneity.  相似文献   

19.
20.
We examine the hierarchical structures of Turkey’s foreign trade by using real prices of their commodity export and import move together over time. We obtain the topological properties among the countries based on Turkey’s foreign trade during the 1996-2010 period by using the concept of hierarchical structure methods (minimal spanning tree, (MST) and hierarchical tree, (HT)). These periods are divided into two subperiods, such as 1996-2002 and 2003-2010, in order to test various time-window and observe the temporal evolution. We perform the bootstrap techniques to investigate a value of the statistical reliability to the links of the MSTs and HTs. We also use a clustering linkage procedure in order to observe the cluster structure much better. From the structural topologies of these trees, we identify different clusters of countries according to their geographical location and economic ties. Our results show that the DE (Germany), UK (United Kingdom), FR (France), IT (Italy) and RU (Russia) are more important within the network, due to a tighter connection with other countries. We have also found that these countries play a significant role for Turkey’s foreign trade and have important implications for the design of portfolio and investment strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号