首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electroluminescent intensity and external quantum efficiency (EQE) in ultraviolet organic light‐emitting diodes (UV OLEDs) have been remarkably enhanced by using a graded hole‐injection and ‐transporting (HIT) structure of MoO3/N,N ′‐bis(naphthalen‐1‐yl)‐N,N ′‐bis(phenyl)‐benzidine/MoO3/4,4′‐bis(carbazol‐9‐yl)biphenyl (CBP). The graded‐HIT based UV OLED shows superior short‐wavelength emis‐ sion with spectral peak of ~410 nm, maximum electroluminescent intensity of 2.2 mW/cm2 at 215 mA/cm2 and an EQE of 0.72% at 5.5 mA/cm2. Impedance spectroscopy is employed to clarify the enhanced hole‐injection and ‐transporting capacity of the graded‐HIT structure. Our results provide a simple and effective approach for constructing efficient UV OLEDs. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

2.
The molecular structure of methyl trifluoroacetate (CF3C(O)OCH3) has been determined in the gas phase from electron‐diffraction data supplemented by ab initio (MP2) and DFT calculations using different basis sets. Experimental data revealed an anti conformation with a dihedral angle θ (CCOC) = 180°. Quantum mechanical calculations indicate the possible existence of two conformers, differing by a rotation about the C(O) O bond. The global minimum represents a Cs‐symmetric structure in which the CF3 group has the anti orientation with respect to the CH3 group, but there is another potential minimum, much higher in energy, representing a Cs‐symmetric structure with a cis conformation. The preference for the anti conformation was studied using the total energy scheme and the natural bond orbital (NBO) partition scheme. Additionally, the total potential energy has been deconvoluted using a six‐fold decomposition in terms of a Fourier‐type expansion, showing that the electrostatic and steric contributions are dominant in stabilizing the anti conformer. Infrared spectra of CF3C(O)OCH3 were obtained for the gaseous and liquid phases, while the Raman spectrum was recorded for the liquid phase. Harmonic vibrational frequencies and a scaled force field have been calculated, leading to a final root mean‐square deviation of 9 cm−1 when comparing experimental and calculated frequencies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In connection with study of chiral derivatizing agents (CDAs) for NMR determination of absolute configuration of organic compounds, factors controlling the conformational preference between syn‐ and anti‐forms in α‐substituted α‐fluorophenylacetic acid methyl ester (FC(X)(Ph)COOMe) model systems were theoretically investigated. Substituents X at the stereogenic carbon atom were X = H, C?CH and CH3, the electronic and steric properties of which were significantly different from each other. The model system with X = C?CH and that with X = CH3 were found to be possible candidates for fluorine‐containing CDAs. The syn conformation is stable compared with the anti one by 0.7 kcal mol?1 for the ester with X = C?CH. On the other hand, the anti conformation is stable compared with the syn one by 0.5 kcal mol?1 for the ester with X = CH3. Both natural bond orbital (NBO) analysis and deletion of selected orbitals based on the donor–acceptor NBO scheme were adopted for semi‐quantitative estimation of factors responsible for the conformational preference as well as a qualitative inspection of occupied canonical molecular orbitals (MOs). It was shown that [σ–(σ* + π*)(C?O)] and [σσ*(Ph) and π(Ph)–σ*] hyperconjugations are the main factors controlling the conformational preferences between the syn and anti conformations. Other types of effects such as electrostatic effects were also investigated. The role of the fluorine atom was also clarified. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
《光谱学快报》2013,46(4-5):487-496
Abstract

Inverse secondary kinetic isotope effects are determined for the dimerization of all‐cis‐cyclononatetraenyl radical, 1, to its corresponding dimer, all‐cis‐9,9′‐bicyclonona‐1,3,5,7‐tetraene, 2, (step 1, k H/k D=0.5), and cyclization of the latter to 9,9′‐bisbicyclo[4.3.0]cyclonona‐2,4,7‐triene, 3 (step 2, k H/k D=0.75). These results are obtained by comparison of 1H‐ and 2D‐NMR spectra of 3 and employment of a simple statistical method for acquiring kinetic data. This new strategy appears superior to conventional methods in being fast, simple, and less expensive.  相似文献   

5.
《光谱学快报》2013,46(4-5):477-485
Abstract

The 1H‐ and 13C‐NMR spectra of some substituted stilbenes and chalcones were assigned unambiguously on the basis of a combination of homo‐ (COSY) and heteronuclear (HETCOR) two‐dimensional methods, the chemical shifts, as well as spin‐coupling constants. The Aik empirical parameters of the –O–C(S)–N(CH3)2, –S–C(O)–N(CH3)2, and –SH group were calculated to help predict the chemical shifts of substituted stilbenes, 4′‐nitrostilbenes, and chalcones. The 1H‐ and 13C‐NMR spectra have been shown to be able to differentiate between the isomers of O‐stilbenyl (4, 5) and S‐stilbenyl N,N‐dimethylthiocarbamates (7, 8) as well as O‐chalconyl (6) and S‐chalconyl N,N‐dimethylthiocarbamates (9).  相似文献   

6.
Nitroaldol reaction of phenylsulfonylnitromethane with formaldehyde affords a mixture of 2,4‐dinitro‐2,4‐bis(phenylsulfonyl)butan‐1‐ol and 2,4‐dinitro‐2,4‐ bis(phenylsulfonyl)pentane‐1,5‐diol. Treatment of this mixture with base followed by reacidification affords 1,1'‐[(1,3‐dinitro‐1,3‐propanediyl)bis(sulfonyl)]bis(benzene) as a mixture of (R*, R*) and (R*, S*)‐diastereomers from which the (R*, S*)‐diastereomer can be obtained pure. The intermediate in the nitroaldol reaction is (1‐nitroethenyl)sulfonylbenzene and, if dienes are present, additional products are also obtained. If either (E)‐2‐methyl‐1,3‐pentadiene or 1‐(1‐methylethenyl)cyclohexene are present, typical Diels‐Alder adducts are obtained with the major isomers explainable by assuming a transition state in which the nitro group is endo. If furan is present, its formal conjugate addition product, 2‐[2‐nitro‐2‐(phenylsulfonyl)ethyl]furan, is formed. If cyclooctatetraene is present, it first dimerizes and then affords isomeric Diels‐Alder cycloadducts of the dimer. Semiempirical calculations comparing the LUMO energies of (1‐nitroethenyl)sulfonylbenzene to the corresponding trans‐1,2 isomer are presented to explain relative reactivity of 1,1‐ and 1,2‐disubstituted dienophiles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
π‐Facial selectivity data for the reduction and methylation of some 4ax‐substituted (X) 2‐adamantanones ( 3 , Y = O) as well as the nucleophilic trapping of secondary and tertiary 4ax‐substituted (X)‐2‐adamantyl cations ( 4 ; R = H and CH3, respectively) and the 4‐methylene‐2‐adamantyl radical ( 8 ) are presented. The pronounced anti‐face selectivities observed for ( 3 , Y = O and 4 , R = CH3) emphasize the importance of the steric factor as expected for systems with a strong steric bias. However, the dominant syn‐face capture of 4 (R = H) was completely unexpected and highlights a subtle interplay between steric and electronic effects. Finally, the very high anti‐face stereoselectivity for the trapping of ( 8 ) with the trimethylstannyl anion (Me3Sn?) is rationalized in terms of an electrostatic effect overwhelming the steric factor. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The kinetics and mechanism of the nucleophilic vinylic substitution of dialkyl (alkoxymethylidene)malonates (alkyl: methyl, ethyl) and (ethoxymethylidene)malononitrile with substituted hydrazines and anilines R1–NH2 (R1: (CH3)2N, CH3NH, NH2, C6H5NH, CH3CONH, 4‐CH3C6H4SO2NH, 3‐ and 4‐X‐C6H4; X: H, 4‐Br, 4‐CH3, 4‐CH3O, 3‐Cl) were studied at 25 °C in methanol. It was found that the reactions with all hydrazines (the only exception was the reaction of (ethoxymethylidene)malononitrile with N,N‐dimethylhydrazine) showed overall second‐order kinetics and kobs were linearly dependent on the hydrazine concentration which is consistent with the rate‐limiting attack of the hydrazine on the double bond of the substrate. Corresponding Brønsted plots are linear (without deviating N‐methyl and N,N‐dimethylhydrazine), and their slopes (βNuc) gradually increase from 0.59 to 0.71 which reflects gradually increasing order of the C–N bond formed in the transition state. The deviation of both methylated hydrazines is probably caused by the different site of nucleophilicity/basicity in these compounds (tertiary/secondary vs. primary nitrogen). A somewhat different situation was observed with the anilines (and once with N,N‐dimethylhydrazine) where parabolic dependences of the kinetics gradually changing to linear dependences as the concentration of nucleophile/base increases. The second‐order term in the nucleophile indicates the presence of a steady‐state intermediate ‐ most probably T±. Brønsted and Hammett plots gave βNuc = 1.08 and ρ = ?3.7 which is consistent with a late transition state whose structure resembles T±. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
We have isolated two isomeric solids 1 and 2 of N,N′‐bis(3,5‐dichlorosalicylidene)‐2,2′‐ethylenedianiline and characterized by IR, UV/Vis, X‐ray powder diffraction, thermogravimetric analysis/differential thermal analysis, and X‐ray crystallography. Although the solids are same formulas, each shows different colors and crystal structures. Orange solid ( 1 ) shows endo conformation while yellow solid ( 2 ) exhibits exo form depending on packing modes. UV/Vis spectra of 1 and 2 appear very similar patterns in the solid state; however, the bands of 1 are slightly red‐shifted compared with those of 2 . 1 displays a strong fluorescent emission band at ~582 nm while 2 shows an intense fluorescent signal at ~563 nm. The charge density populations of 1 and 2 have been studied by computational simulations using density functional theory at pbe1pbe/6‐311G** level. The calculated highest occupied molecular orbital and lowest unoccupied molecular orbital energies of 1 and 2 confirm that charge transfer occurs within the organic molecules. The energy difference of HOMO‐LUMO in 1 is smaller slightly than that of 2 about 0.05 eV (~17 nm). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The 1H NMR titration method is used to investigate through‐space and through‐bond effects on the association of diols with pyridine in benzene. Alkan‐1,n‐diols (n goes from 2 to 10), DL and meso isomers of butan‐2,3‐, pentan‐2,4‐ and hexan‐2,5‐diols, two adamantane diols and a bicyclo[2.2.2]octane diol are compared with alkanols. The –CH2OH groups of the tri‐ and bicyclic compounds behave as if they were independent, with limiting OH proton shifts (at very low concentration) and both the first and the second association constants similar to those of a primary alcohol. In contrast, the alkane diols, with n = 2–4, display unusually high limiting shifts, ranging from 1.0 to 1.5 ppm (2.1 ppm for one methyl‐substituted diol). For these diols the first dissociation constant and the sum of the OH proton shifts in the 1:1 pyridine: diol complex are enhanced. This may be attributed to small cooperative effects, implying intramolecular hydrogen bonding, for n = 3 and 4, but for n = 2 a through‐bond effect accounts for most of the increase. Substituent interaction falls off sharply for n = 5 and is practically negligible for n = 10, for which the second association constant is close to the first. A sterically hindered BiEDOT diol, 2,2′‐bis{(3,4‐ethylenedioxythienyl)‐5‐[3‐(2,2,4,4‐tetramethylpentan‐3‐ol)]} behaves like the polycyclic compounds, with the two ? C(t‐Bu)2OH groups independent. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The stabilities of amorphous indium‐zinc‐oxide (IZO) thin film transistors (TFTs) with back‐channel‐etch (BCE) structure are investigated. A molybdenum (Mo) source/drain electrode was deposited on an IZO layer and patterned by hydrogen peroxide (H2O2)‐based etchants. Then, after etching the Mo layer, SF6 plasma with direct plasma mode was employed and optimized to improve the bias stress stability. Scanning electron microscopy and X‐ray photoelectron spectroscopic analysis revealed that the etching residues were removed efficiently by the plasma treatment. The modified BCE‐ TFTs showed only threshold voltage shifts of 0.25 V and –0.20 V under positive/negative bias thermal stress (P/NBTS, VGS = ±30 V, VDS = 0 V and T = 60 °C) after 12 hours, respectively. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A series of substituted chlorinated chalcones namely, 3‐(2,4‐dichlorophenyl)‐1‐(4′‐X‐phenyl)‐2‐propen‐1‐one, have been synthesized, X being H, NH2, OMe, Me, F, Cl, CO2Et, CN, and NO2. Dual substituent parameter (DSP) models of 13C NMR chemical shift (CS) have revealed that π‐polarization concept could be utilized to explain the reverse field effect at CO, the enhanced substituent field effect at CO, C‐2, and C‐5, and the decreased sensitivity of substituent field effect at C‐6. Chlorine atoms dipole direction at the benzylidene ring either enhances or reduces substituent effect depending on how they couple with the substituent dipole at the probe site. The correlation of 13C NMR CS of C‐2, C‐5, and C‐6 with σ and σ indicates that chlorine atoms in the benzylidine ring deplete the ring from charges. Both MSP of Hammett and DSP of Taft 13C NMR CS models give similar trends of substituent effects at C‐2, C‐5, and C‐6. However, the former fail to give a significant correlation for CO and C‐6 13C NMR CS. MSP of σq and DSP of Taft and Reynolds models significantly correlated 13C NMR CS of Cβ. MSP of σq fails to correlate C‐1′ 13C NMR CS. Investigation of 13C NMR CS of non‐chlorinated chalcones series: 3‐phenyl‐1‐(4′‐X‐phenyl)‐2‐propen‐1‐one has revealed similar trends of substituent effects as in the chlorinated chalcones series for C‐1′, CO, Cα, and Cβ. In contrast, the substituent effect of the non‐chlorinated chalcone series at C‐2, C‐5, and C‐6 did not correlate with any substituent constant. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
14.
《光谱学快报》2013,46(5-6):419-427
The differences in the backbone conformation between O‐thymidine‐3′‐(1) and 5′‐yl O‐alkyl N‐phosphoryl serine methyl esters (2) have been investigated by solution 13C NMR spectroscopy. The stereo‐sensitive vicinal 31P–13C coupling constants were measured and used in the conformational analysis for the P–O5′–C5′, P–O3′–C3′, and P–N–Cα bonds. Three‐dimensional structural characteristics of dephosphorylation reactions of Compounds are also discussed.  相似文献   

15.
How does the endo C–F bond influence the excess electron binding motif? For lithium‐doped endohedral perfluorofullerenes with endo C–F bonds, under both internal‐push (from exo C–F bonds) and external‐push (from endo C–F bonds) electron effects, the singly occupied molecular orbital electron cloud of the sphere‐like Li···F8@C60F52 (D2) is partially dispersed within the σp–s antibonding orbital of endo C–F bonds and the space between Cδ+–Fendoδ– double electric layers, which makes Li···F8@C60F52 have partial excess electron (electride characteristics) and partial lithium salt characteristics, while in the tube‐like Li···F2@C60F58 (Cs), as the Li is changing from approaching F to keeping away from F and to approaching another one, the singly occupied molecular orbital electron cloud is mainly dispersed from within the p orbital of the short endo C–F bond to within the middle of the two F atoms and again to within the p orbital of the short endo C–F bond, which indicates an evolution from lithium salt characteristic to excess electron characteristic, and again to lithium salt characteristic. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Hydrolytic reactions of cyclic bis(3′‐5′)diadenylic acid (c‐di‐AMP) have been followed by Reversed phase high performance liquid chromatography (RP‐HPLC) over a wide pH range at 90 °C. Under neutral and basic conditions (pH ≥ 7), disappearance of the starting material (first‐order in [OH?]) was accompanied by formation of a mixture of adenosine 2′‐monophosphate and 3′‐monophosphate (2′‐AMP and 3′‐AMP). Under very acidic conditions (from H0 = ?0.7 to 0.2), c‐di‐AMP undergoes two parallel reactions (first‐order in [H+]): the starting material is cleaved to 2′‐AMP and 3′‐AMP and depurinated to adenine (i.e., cleavage of the N‐glycosidic bond), the former reaction being slightly faster than the latter one. At pH 1–3, isomerization to cyclic bis(2′‐5′)diadenylic acid competes with the depurination. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The positive hyperfine coupling constants of the geminal 1H nuclei in cis‐1,2‐dimethyl‐ and cis‐1,2‐diphenylcyclopropane radical cations show a significant stereoelectronic effect: the 1H nuclei trans (anti) to the substituents are coupled much more strongly than the corresponding nuclei cis (syn) to them. Theoretical calculations on these radical cations and on bismethano[2,2]paracylophane as well as new 1H‐CIDNP experiments at 200 Mz elucidate the general features of these systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
2,2,4,4‐Tetramethyl‐3‐{2‐[3,4‐dialkoxy‐5‐(3‐pyridyl)]thienyl}pentan‐3‐ols self‐associate both in the solid state and in solution. The IR spectra of the solids display a broad OH absorption at 3320 cm?1, corresponding to an intermolecularly hydrogen‐bonded syn rotamer, probably a dimer, as well as absorptions around 3500 cm?1 of the intramolecularly hydrogen‐bonded anti form. Well‐crystallized samples of these derivatives go into solution in the syn form but undergo rotation to the anti rotamer at a rate which can be measured directly by proton Nuclear Magnetic Resonance (NMR) spectroscopy. The diethoxy derivative was studied in a wide variety of solvents. The activation energy for synanti rotation is practically solvent‐independent, whereas that of the reverse reaction falls in hydrogen‐bonding solvents, by more than 2 kcal mol?1 on going from chloroform or benzene to dimethylsulfoxide (DMSO). By combining direct measurements at low temperature and Dynamic Nuclear Magnetic Resonance (DNMR) results at high temperature, rotation rates were evaluated over a range of more than 100 K, and significantly large negative activation entropies determined. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
syn‐2,2,4,4‐Tetramethyl‐3‐{2‐[3,4‐alkylenedioxy‐5‐(3‐pyridyl)]thienyl}pentan‐3‐ols self‐associate both in the solid state and in solution. Single‐crystal X‐ray diffraction study of the 3,4‐ethylenedioxythiophene (EDOT) derivative shows that it exists as a centrosymmetric head‐to‐tail, syn dimer in the solid state. The IR spectra of the solids display only a broad OH absorption around 3300 cm?1, corresponding to a hydrogen‐bonded species. 1H Nuclear Overhauser Effect Spectroscopy (NOESY) NMR experiments in benzene reveal interactions between the tert‐butyl groups and the H2 and H6 protons of the pyridyl group. Two approaches have been used to determine association constants of the EDOT derivative by NMR titration, based on the concentration dependence of (i) the syn/anti ratio and (ii) the OH proton shift of the syn rotamer. Reasonably concordant results are obtained from 298 to 323 K (3.6 and 3.9 M?1, respectively, at 298 K). Similar values are obtained from the syn OH proton shift variation for the 3,4‐methylenedioxythiophene (MDOT) derivative. Concentration‐dependent variation of the anti OH proton shift in the latter suggests that the anti isomer associates in the form of an open, singly hydrogen‐bonded dimer, with a much smaller association constant than the syn rotamer. Self‐association constants for 3‐pyridyl‐EDOT‐alkanols with smaller substituents vary by a factor of 4 from (i‐Pr)2 up to (CD3)2, while the hetero‐association constants for the same compounds with pyridine vary slightly less. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
A nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopic investigation of the photoreduction reactions and ability of several chloro‐substituted benzophenone (Cl‐BP) triplets is described. The TR3 results show that the 3‐chlorobenzophenone (3‐Cl‐BP), 4‐chlorobenzophenone (4‐Cl‐BP) and 4,4′‐dichlorobenzophenone (4,4′‐dichloro‐BP) triplets exhibit similar hydrogen abstraction ability with the parent BP triplet. In 2‐propanol, the 3‐Cl‐, 4‐Cl‐ and 4,4′‐dichloro‐diphenylketyl (DPK) radicals were observed and they appear to react with dimethylketyl radicals at the para‐position to form a light absorption transient species. These transient species were characterized with TR3 spectra, and identified with the help of results from density functional theory calculations. In an acetontitrile/water (MeCN:H2O) 1:1 mixed solvent, these DPK radicals were also observed but with slower formation rates. However, the 2‐Cl‐DPK radical was observed to form with a lower yield and a significantly slower formation rate than the other chloro‐substituted benzophenones examined here in 2‐propanol under the same experimental conditions. These results reveal that the 2‐chloro substituent reduces the hydrogen abstraction ability of the substituted BP triplet, which was not as expected based on the assumption that the electron‐withdrawing group could increase its photoreduction ability. This unusual ortho effect of the chlorine substitution is briefly discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号