首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thin films of tin selenide (SnSe) were deposited on sodalime glass substrates, which were held at different temperatures in the range of 350‐550 K, from the pulverized compound material using thermal evaporation method. The effect of substrate temperature (Ts) on the structural, morphological, optical, and electrical properties of the films were investigated using x‐ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission measurements, and Hall‐effect characterization techniques. The temperature dependence of the resistance of the films was also studied in the temperature range of 80‐330 K. The XRD spectra and the SEM image analyses suggest that the polycrystalline thin films having uniform distribution of grains along the (111) diffraction plane was obtained at all Ts. With the increase of Ts the intensity of the diffraction peaks increased and well‐resolved peaks at 550 K, substrate temperature, were obtained. The analysis of the data of the optical transmission spectra suggests that the films had energy band gap in the range of 1.38‐1.18 eV. Hall‐effect measurements revealed the resistivity of films in the range 112‐20 Ω cm for films deposited at different Ts. The activation energy for films deposited at different Ts was in the range of 0.14 eV‐0.28 eV as derived from the analysis of the data of low‐temperature resistivity measurements. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
GeO2 thin films were prepared by sol‐gel method on ITO/Glass substrate. The electrical and optical properties and the microstructures of these films were investigated with special emphasis on the effects of an annealing treatment in ambient air. The films were annealed at various temperatures from 500 °C to 700 °C. Structural analysis through X‐ray diffraction (XRD) and atomic force microscope (AFM) showed that surface structure and morphological characteristics were sensitive to the treatment conditions. The optical transmittance spectra of the GeO2/ITO/Glass were measured using a UV‐visible spectrophotometer. All films exhibited GeO2 (101) orientation perpendicular to the substrate surface where the grain size increased with increasing annealing temperature. The optical transmittance spectroscopy further revealed high transparency (over 70 %) in the wave range 400 – 800 nm of the visible region. At an annealing temperature level of 700 °C, the GeO2 films were found to possess a leakage current density of 1.31×10‐6A/cm2 at an electrical field of 20 kV/cm. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
ZnO thin films doped with Li (ZnO:Li) were deposited onto SiO2/Si (100) substrates by direct‐current sputtering technique in the temperature range from room temperature to 500 °C. The crystalline structure, surface morphology and composition, and optical reflectivity of the deposited films were studied by X‐ray diffraction (XRD), Scanning Electron Microscopy (SEM), X‐ray Photoelectron Spectroscopy (XPS) and optical reflection measurements. Rough surface p‐type ZnO thin film deposition was confirmed. The results indicated that the ZnO:Li films growed at low temperatures show c‐axis orientation, while a‐axis growth direction is preferable at high temperatures. Moreover, the optical reflectivity from the surface of the films matched very well with the obtained results. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Nanocrystalline films of (Cd0.7‐Zn0.3)S:CdCl2,Gd are prepared by chemical deposition technique on microscopic glass substrates with varied concentrations of capping agents thiophenol and methanol. The deposition is based on the principle of precipitation followed by condensation. Results of XRD, SEM, optical absorption spectra and photoluminescence emission spectra are presented. The crystalline nature of (Cd0.7‐Zn0.3)S:CdCl2,Gd was found by XRD studies in which different diffraction peaks of CdS and ZnS are observed. The SEM micrographs show long tubes and irregular distributions of particles in presence of capping agents. The blue shift observed from optical absorption spectra in the present case indicates a quantization effect. Band gaps are also found to increase due to particle size reduction. The photoluminescence emission spectra show shift of peaks in the lower wavelength side due to reduction in particle size. The particle sizes are determined from optical absorption and XRD studies. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Mixed ZnO‐ZrO2 films have been obtained by sol‐gel technology. By using spin coating method, the films were deposited on Si and glass substrates. The influence of thermal annealings (the temperatures vary from 400 °C to 750 °C) on their structural properties has been studied. The structural behavior has been investigated by the means of XRD and FTIR techniques. The results revealed no presence of mixed oxide phases, the detected crystal phases were related to the hexagonal ZnO and to crystalline ZrO2. The sol‐gel ZnO‐ZrO2 films showed polycrystalline structure with a certain degree of an amorphous fraction. The optical transmittance reached 91% and it diminished with increasing the annealing temperatures. The optical properties of the sol‐gel ZnO‐ZrO2 films, deposited on glass substrates are excellent with high transparency and better then those of pure ZrO2 films, obtained at similar technological conditions. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
ZnO thin films with different Mg doping contents (0%, 3%, 5%, 8%, 10%, respectively) were prepared on quartz glass substrates by a modified Pechini method. XRD patterns reveal that all the thin films possess a polycrystalline hexagonal wurtzite structure. The peak position of (002) plane for Mg‐doped ZnO thin films shifts toward higher angle due to the Mg doping. The crystallite size calculated by Debey‐Scherrer formula is in the range of 32.95–48.92 nm. The SEM images show that Mg‐doped ZnO thin films are composed of dense nanoparticles, and the thickness of Mg‐doped ZnO thin films with Mg doped at 8% is around 140 nm. The transmittance spectra indicate that Mg doping can increase the optical bandgap of ZnO thin films. The band gap is tailored from 3.36 eV to 3.66 eV by changing Mg doping concentration between 3% and 10%. The photoluminescence spectra show that the ultraviolet emission peak of Mg‐doped ZnO thin films shifts toward lower wavelength as Mg doping content increases from 3% to 8%. The green emission peak of Mg‐doped ZnO thin films with Mg doping contents were 3%, 8%, and 10% is attributed to the oxygen vacancies or donor‐acceptor pair. These results prove that Mg‐doped ZnO thin films based on a modified Pechini method have the potential applications in the optoelectronic devices.  相似文献   

7.
室温下采用射频磁控溅射(RFMS)技术在玻璃与硅基板上分别沉积了纯铌酸锂LN薄膜、高掺锌(6%,摩尔分数,下同)LN∶ZnO薄膜和高掺镁(5%)LN∶MgO薄膜,并在575 ℃条件下退火进一步提高薄膜的结晶度。通过原子力显微镜(AFM)、X射线衍射(XRD)、紫外可见吸收(UV-Vis)和椭偏仪等测试研究了三种铌酸锂薄膜的形貌、结构和光学性质。XRD分析表明掺杂铌酸锂薄膜和纯铌酸锂薄膜具有相同的生长取向,AFM、XRD、UV-Vis测试结果表明,掺杂将增大铌酸锂薄膜的晶粒尺寸,光学带隙的红移现象与晶粒尺寸相关,且掺Mg的影响大于掺Zn。此外利用霍尔效应测试仪研究了LN、LN∶ZnO和LN∶MgO薄膜的电学性质,测试结果表明三种薄膜均为n型半导体,其中LN∶MgO薄膜电导率的变化趋势不同于LN∶ZnO和LN薄膜,且发现温度在18~50 ℃范围内,随着温度的升高,LN∶MgO薄膜的电导率变化微小,而LN∶ZnO和LN薄膜的电导率逐渐增大。  相似文献   

8.
Thermally processed lead iodide (PbI2) thin films were prepared by the vacuum evaporation method in a constant ambient. Measured thickness of the film was verified analytically from the optical transmittance data in a wavelength range between 300 and 1600 nm. From the Tauc relation for the non‐direct inter band transition, the optical band gap of the film was found to be 2.58 eV for film thickness 300 nm. X‐ray diffraction analysis confirmed that PbI2 films are polycrystalline, having hexagonal structure. The low fluctuation in Urbach energy indicates that the grain size is quite small. The present findings are in agreement with the other results. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Sb2S3 thin films are obtained by evaporating of Sb2S3 powder onto glass substrates maintained at room temperature under pressure of 2×10‐5 torr. The composition of the thin films was determined by energy dispersive analysis of X‐ray (EDAX). The effect of thermal annealing in vacuum on the structural properties was studied using X‐ray diffraction (XRD) technique and scanning electron microscopy (SEM). The as‐deposition films were amorphous, while the annealed films have an orthorhombic polycrystalline structure. The optical constants of as‐deposited and annealed Sb2S3 thin films were obtained from the analysis of the experimental recorded transmission spectral data over the wavelength range 400‐1400 nm. The transmittance analysis allowed the determination of refractive index as function of wavelength. It was found that the refractive dispersion data obeyed the single oscillator model, from which the dispersion parameters (oscillator energy, E0, dispersion energy, Ed) were determined. The static refractive index n(0), static dielectric constant, ε, and optical band gap energy, Eg, were also calculated using the values of dispersion parameters. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
ZnTe thin films were deposited onto well‐cleaned glass substrates kept at different temperatures (Ts = 303, 373 and 423 K), by vacuum evaporation method under the pressure of 10–5 Torr. The thickness of the film was measured by quartz crystal monitor and verified by the multiple beam interferometer method. The structural characterization was made using X‐ray diffractometer with filtered CuKα radiation. The grain sizes of the microcrystallines in films increases with increase in substrate temperature. The strain (ε), grain size (D) and dislocation density (δ) was calculated and results are discussed based on substrate temperature. Optical behaviour of the film was analyzed from transmittance spectra in the visible region (400–800 nm). The optical transition in ZnTe films is direct and allowed type. The optical band gap energy shows an inverse dependence on substrate temperature and thickness. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Sol‐gel route has been applied for a deposition of the thin films of aluminum oxide and Ag embedded in Al2O3 films. The films are spin‐coated on Si and quartz substrates with the film thickness of 120 nm. XRD analysis has been used for the determination of the film structure. FTIR spectroscopy is applied for studying vibrational properties of the obtained coatings. Optical characterization is done by UV‐VIS spectroscopy. The formation of Ag nanoparticles has been confirmed by XRD and optical data. The sol‐gel process is found to be useful technology for incorporation of Ag nanoparticles in the metal oxide matrices. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The effect of illumination during the close‐spaced sublimation (CSS) growth on composition, structural, electrical, optical and photovoltaic properties of CdTe films and CdTe/CdS solar cells were investigated. Data on comparative study by using X‐ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectra and conductivity‐temperature measurements of CdTe films prepared by CSS method in dark (CSSD) and under illumination (CSSI) were presented. It is shown that the growth rate and the grain size of CdTe films grown under illumination is higher (by factor about of 1.5 and 3 respectively) than those for films prepared without illumination. The energy band gap of CdTe films fabricated by both technology, determined from absorption spectra, is same (about of 1.50 eV), however conductivity of the CdTe films produced by CSSI is considerably greater (by factor of 107) than that of films prepared by CSSD. The photovoltaic parameters of pCdTe/nCdS solar cells fabricated by photostimulated CSSI technology (Jsc = 28 mA/cm2, Voc =0.63 V) are considerably larger than those for cells prepared by CSSD method (Jsc = 22 mA/cm2, Voc = 0.52 V). A mechanism of photostimulated changes of properties of CdTe films and improvement of photovoltaic parameters of CdTe/CdS solar cells is suggested. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Cadmium Selenide (Cd34Se66) thin films are deposited on a glass substrate using the thermal evaporation method at room temperature. The Cd34Se66 films are characterized using XRD. The crystallite size of the film is calculated from XRD data, which is found as 29.61 nm as-deposited. It is also found that crystallite size of Cd34Se66 changed after irradiation with N2 and Nd:YAG laser. The changes in the optical properties of the films after irradiation with N2 laser and Nd:YAG laser are also studied in the wavelength range of 300-700 nm and it is found that the optical band gap of the Cd34Se66 films changed after laser irradiation.  相似文献   

14.
The aim of this study depends on understanding the effect of target‐to‐substrate distance (DTS) on ZnO thin films deposited by r.f. magnetron sputtering on to glass substrates at room temperature conditions. The DTS was changed from 35 mm to 65 mm with steps of 5 mm at 165 W and 0.2 Pa. The deposition rate of the films were ranged from 76 Ǻ / min to 146 Ǻ / min, while 10‐3 Ω.cm was obtained as the resistivity value with the help of four point probe technique. The structural investigations were carried out by using both the x‐ray diffraction (XRD) and high resolution transmission electron microscopy. According to XRD observations, the films were (002) oriented. Surface behaviour of the ZnO films was examined with atomic force microscopy and scanning electron microscopy. The root mean square (RMS) values were varied from 4.6 nm to 22.8 nm. Also, optical properties were obtained from UV–visible spectrophotometer and the transmittances as around 80 %. At 45 mm DTS value, the minimum resistivity measured as 9 × 10− 4 Ω.cm with 76 Ǻ / min deposition rate. The RMS was obtained as 4.9 nm and transmission was measured as 85.30 %, while band gap was 3.45 eV.  相似文献   

15.
Transparent conductive gallium‐doped zinc oxide (Ga‐doped ZnO) films were prepared on glass substrate by magnetron sputtering. The influence of substrate temperature on structural, optoelectrical and surface properties of the films were investigated by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), spectrophotometer, four‐point probe and goniometry, respectively. Experimental results show that all the films are found to be oriented along the c‐axis. The grain size and optical transmittance of the films increase with increasing substrate temperature. The average transmittance in the visible wavelength range is above 83% for all the samples. It is observed that the optoelectrical property is correlated with the film structure. The Ga‐doped ZnO film grown at the substrate temperature of 400 °C has the highest figure of merit of 1.25 × 10−2 Ω−1, the lowest resistivity of 1.56 × 10−3 Ω·cm and the highest surface energy of 32.3 mJ/m2.  相似文献   

16.
Undoped and Indium doped tin disulphide (SnS2) thin films had been deposited onto glass substrates at Ts = 300 °C using spray pyrolysis technique under atmospheric pressure with stannous chloride, indium chloride and thiourea as precursors. The structural, optical and electrical properties of the deposited films were characterized. The XRD pattern revealed that the undoped and doped films had preferred orientation along (002) plane with hexagonal structure. FESEM micrographs had shown that morphologies of the films changed with indium doping. Optical constant such as refractive index (n), extinction coefficient (k), real and imaginary parts of dielectric constants were evaluated from transmittance and reflectance spectra in UV‐Visible spectroscopy. The optical absorption data were used to determine the band gap energy and it was found to be 2.75 eV for undoped and 2.50 eV for indium doped films respectively. The room temperature dark resistivity was found to be 4.545 × 103 Ω‐cm and 5.406 × 103 Ω‐cm for undoped and In‐doped films respectively.  相似文献   

17.
Zinc oxide thin films were deposited on p‐type (100) silicon and Corning glass substrate by using RF magnetron sputtering at different sputter powers range 100–200 W and sputter pressures range 2–8 Pa. The deposited films were characterized by X‐ray diffraction, atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscope and UV‐Vis‐NIR spectrophotometer. The films formed at sputter power of 100 W consists of weak (100) reflection and then sputter power increased to 150 W additional (110) reflection was present with enhancement in the intensity of (100) peak. Further increase of sputtering power to 200 W the intensity of (100) phase decreased with the presence of additional peaks of (002) and (101) of ZnO. The FTIR analysis confirms the Zn‐O absorption band was located at 414 cm‐1. The optical band gap of zinc oxide films decreased from 3.28 to 3.07 eV with increase of sputter power from 100 to 200 W. The maximum crystallite size of 21 nm, the root mean square roughness of 7.2 nm was found at films formed at working pressure of 5 Pa. The optical transmittance of the films increased from 88 to 96% and then decreased to 84% with increase of sputter pressure from 2 to 8 Pa.  相似文献   

18.
This study deals with the role of the different substrates on the microstructural, optical and electronical properties of TiO2 thin films produced by conventional direct current (DC) magnetron sputtering in a mixture of pure argon and oxygen using a Ti metal target with the aid of X–ray diffractometer (XRD), ultra violet spectrometer (UV–vis) and atomic force microscopy (AFM) measurements. Transparent TiO2 thin films are deposited on Soda lime glass, MgO(100), quartz and sitall substrates. Phase purity, surface morphology, optical and photocatalytic properties of the films are compared with each other. It is found that the amplitude of interference oscillation of the films is in a range of 77‐89%. The transmittance of the film deposited on Soda lime glass is the smallest while the film produced on MgO(100) substrate obtains the maximum transmittance value. The refractive index and optical band gap of the TiO2 thin films are also inferred from the transmittance spectra. The results show that the film deposited on Soda lime glass has the better optical property while the film produced on MgO(100) substrate exhibits much better photoactivity than the other films because of the large optical energy band gap. As for the XRD results, the film prepared on MgO(100) substrate contains the anatase phase only; on the other hand, the other films contain both anatase and rutile phases. Furthermore, AFM images show that the regular structures are observed on the surface of all the films studied. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this paper, AgGaS2 nanofilms have been prepared by a two‐step process involving the successive ionic layer absorption and reaction (SILAR) and annealing method. Using AgNO3, GaCl3 and Na2S2O3 as reaction sources, the mixture films were firstly deposited on quartz glass substrates at room temperature, and then annealed in Ar environment at 200–500 °C for 4 h, respectively. The effects of annealing temperature on structural and optical properties were investigated by XRD, UV‐Vis, EDS and photoluminescence (PL) spectra. It was revealed in XRD results that α‐Ag9GaS6 was contained in the samples annealed at 200 °C, and this phase was decreased with increase of the annealing temperatures. When the sample was annealed at above 400 °C, the chalcopyrite AgGaS2 nanofilm was obtained. The preferred orientation was exhibited along the (112) plane. It was shown in atomic force microscopy (AFM) results that the grain sizes in AgGaS2 nanofilms were 18‐24 nm and the thin films were smooth and strongly adherent to the substrates. When the annealing temperature was higher than 400 °C, it is an optimum condition to improve the structural and optical properties of the AgGaS2 thin films. The room temperature PL spectra of AgGaS2 nanofilms showed prominent band edge emission at 2.72 eV. Based on all results mentioned above, it can be concluded that the SILAR‐annealing method is preferable to preparing high‐quality AgGaS2 nanofilms. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Cd1‐xSnxS thin films were successfully deposited on suitably cleaned glass substrate by chemical bath deposition method at 74 °C. Hydrated Stannous Chloride (SnCl2.2H2O) in aqueous solution was added to the CdS growing solution in different proportions. The experimental results indicate, a successful doping for lower concentration of Sn, saturation for intermediate doping levels, and a degradation of the doping process for higher concentration of Sn. Indirect (X‐ray diffraction) and Direct (Scanning electron microscopy) measurements were performed to characterize the growth and the nature of crystallinity of the different Cd1‐xSnxS films. The effect of annealing on the crystal structure and morphology of the deposited films has also been discussed. The X‐ray diffraction spectra show that the thin films are polycrystalline and have both cubic and hexagonal structure. The Interplanar spacing, lattice constant, grain size, strain, and dislocation density were calculated for as‐deposited and annealed films. The grain size was found to decrease from 5 nm to 0.89 nm with doping concentration of Sn. The grain size further decreased due to annealing at 400 °C. SEM studies show layered growth and long needle like structures along with some voids. After annealing the densification and smaller size of the particles was also observed. The optical absorption spectra show shifting of absorption peaks towards lower wavelength side (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号