首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin films of Sb2Te2Se were prepared by conventional thermal evaporation of the presynthesized material on Corning glass substrates. The chemical composition of the samples was determined by means of energy‐dispersive X‐ray spectrometry. X‐ray diffraction studies on the as‐deposited and annealed films revealed an amorphous‐to‐crystalline phase transition. The as‐deposited and annealed films at T a = 323 and 373 K are amorphous, while those annealed at T a= 423 and 473 K are crystalline with a single‐phase of a rhombohedral crystalline structure as that of the source material. The unit‐cell lattice parameters were determined and compared with the reported data. The optical constants (n , k ) of the investigated films were determined from the transmittance and reflectance data at normal incidence in the spectral range 400–2500 nm. The analysis of the absorption spectra revealed non‐direct energy gaps, characterizing the amorphous films, while the crystalline films exhibited direct energy gaps. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Nanostructured ZnO thin films were coated on glass substrate by spray pyrolysis using Zinc acetate dihydrate as precursor. Effect of precursor concentration on structural, morphological, optical and electrical properties of the films was investigated. The crystal structure and orientation of the ZnO thin films prepared with four different precursor solution concentrations were studied and it was observed that, the prepared films are polycrystalline in nature with hexagonal wurzite structure. The peaks are indexed to (100), (002), (101), (102) and (110) planes. Grain size and texture coefficient (TC) were calculated and the grain size found to increase with an increase in precursor concentration. Presence of Zn and O elements was confirmed with EDAX spectra. Optical absorption measurements were carried out in the wavelength region of 380 to 800 nm and the band gap decreases as precursor concentration increases. The current‐voltage characteristics were observed at room temperature and in dark. It was found that for the films deposited at four different precursor concentrations, the conductivity improves as precursor concentration increases. As trimethyl amine TMA is a good marker for food quality discrimination, sensing behavior of the films at an optimized operating temperature of 373 K, towards various concentrations of (TMA) was observed and reported. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
ZnTe thin films were deposited onto well‐cleaned glass substrates kept at different temperatures (Ts = 303, 373 and 423 K), by vacuum evaporation method under the pressure of 10–5 Torr. The thickness of the film was measured by quartz crystal monitor and verified by the multiple beam interferometer method. The structural characterization was made using X‐ray diffractometer with filtered CuKα radiation. The grain sizes of the microcrystallines in films increases with increase in substrate temperature. The strain (ε), grain size (D) and dislocation density (δ) was calculated and results are discussed based on substrate temperature. Optical behaviour of the film was analyzed from transmittance spectra in the visible region (400–800 nm). The optical transition in ZnTe films is direct and allowed type. The optical band gap energy shows an inverse dependence on substrate temperature and thickness. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Nanostructured titanium dioxide thin films were prepared using reactive pulsed laser ablation technique. Effects of annealing on the structural, morphological, electrical and optical properties are discussed. The structural, electrical and optical properties of TiO2 films are found to be sensitive to annealing temperature and are described with GIXRD, SEM, AFM, UV‐Visible spectroscopy and electrical studies. X‐ray diffraction studies showed that the as‐deposited films were amorphous and at first changed to anatase and then to rutile phase with increase of annealing temperature. Optical constants of these films were derived from the transmission spectra and the refractive index dispersion of the films, subjected to annealing at different temperatures, is discussed in terms of the single oscillator‐Wemple and Didomenico model. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The structural parameters, the axial thermal expansion coefficients and the characteristic Debye temperatures for the order vacancy compound CuGa5Se8 with the chalcopyrite‐related structure, prepared by the Bridgman technique, were determined at different temperatures between 90 and 650 K by the X‐ray diffraction method. The melting point of this compound was defined from the differential thermal analysis data. The anisotropy of thermal expansion in CuGa5Se8 is shown to exist with the coefficients along a ‐axis being larger than those along the c ‐axis throughout the temperature range studied.  相似文献   

6.
The crystal structure as well as the optical properties in the band gap region of (CuInTe2)1‐x(2 ZnTe)x solid solution single crystals grown by directional freezing have been studied. The lattice constants exhibit a linear dependence on crystal composition. The chalcopyrite‐sphalerite phase transition was observed between x = 0.3 and x = 0.4°. The variation of the band gap with respect to crystal composition can be described by a quadratic expression.  相似文献   

7.
The formation of nanocrystalline TiO2 particles has been investigated via a surfactant‐free synthetic non‐hydrothermal method. Titanium isopropoxide and toluene were used as the starting materials. At a low temperature of 250 °C for 6 h, the reaction mixture turned in to a white precipitate (TiO2) as a result of the thermal decomposition of metal alkoxide. The obtained product was found to crystallize purely in the anatase phase with well defined morphology. The powder XRD study confirms that the average size of the particle is close to ∼15 nm. The TEM analysis indicates the sizes of the primary and secondary particles in the range between 8‐10 nm and 15‐20 nm respectively. The quantum size confinement of the crystallites is evident from the blue shift of the absorption edge in the UV‐Visible absorption spectrum. The luminescence property of the TiO2 nanoparticles studied by the emission spectrum confirms the presence of defect levels caused by the oxygen vacancies. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Thin films of tin selenide (SnSe) were deposited on sodalime glass substrates, which were held at different temperatures in the range of 350‐550 K, from the pulverized compound material using thermal evaporation method. The effect of substrate temperature (Ts) on the structural, morphological, optical, and electrical properties of the films were investigated using x‐ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission measurements, and Hall‐effect characterization techniques. The temperature dependence of the resistance of the films was also studied in the temperature range of 80‐330 K. The XRD spectra and the SEM image analyses suggest that the polycrystalline thin films having uniform distribution of grains along the (111) diffraction plane was obtained at all Ts. With the increase of Ts the intensity of the diffraction peaks increased and well‐resolved peaks at 550 K, substrate temperature, were obtained. The analysis of the data of the optical transmission spectra suggests that the films had energy band gap in the range of 1.38‐1.18 eV. Hall‐effect measurements revealed the resistivity of films in the range 112‐20 Ω cm for films deposited at different Ts. The activation energy for films deposited at different Ts was in the range of 0.14 eV‐0.28 eV as derived from the analysis of the data of low‐temperature resistivity measurements. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The crystal structures of silver(I) sulphate, Ag2SO4, have been investigated as a function of temperature. A main feature is the phase transition from the low‐temperature ordered phase, F ddd, to the high‐temperature disordered phase, . In particular, the high‐temperature structure is solved from single crystal synchrotron X‐ray measurements. In this phase the title compound undergoes a colossal (anisotropic) thermal expansion of . This is presumably owing to a high anisotropic vibration state of one of the two crystallographically independent Ag‐atoms. Simultaneously occurring high ionic conductivity may be associated with silver ions moving along the ‐axis using a “paddle‐wheel” assisted percolative mechanism. Onset of metallic silver in the single crystals is documented, seemingly dependent on thermal pre‐history, mosaic structure and chemical synthesis. Possible mechanisms explaining this effect, comprising disproportionation or photo‐decomposition, are suggested.  相似文献   

10.
Ag-doped ZnO (ZnO:Ag) thin films were deposited on quartz substrates by radio frequency magnetron sputtering technique. The influence of oxygen/argon ratio on structural, electrical and optical properties of ZnO:Ag films has been investigated. ZnO:Ag films gradually transform from n-type into p-type conductivity with increasing oxygen/argon ratio. X-ray photoelectron spectroscopy measurement indicates that Ag substitutes Zn site (AgZn) in the ZnO:Ag films, acting as acceptor, and being responsible for the formation of p-type conductivity. The presence of p-type ZnO:Ag under O-rich condition is attributed to the depression of the donor defects and low formation energy of AgZn acceptor. The I–V curve of the p-ZnO:Ag/n-ZnO homojunction shows a rectification characteristic with a turn-on voltage of ∼7 V.  相似文献   

11.
12.
The influence of the Cu‐content in the quaternary compounds CuxAg1‐xInTe2 (0 ≤ x ≤1) on the structural properties of the bulk material was discussed. Bulk ingot materials of CuxAg1‐xInTe2 solid solutions (x = 0.0, 0.25, 0.50, 0.75 and 1.0) have been synthesized by fusion of the constituent elements in the stoichiometric ratios in vacuum‐sealed silica tubes. The materials compositions were confirmed by using energy dispersive analysis of X‐rays (EDAX). X‐ray powder diffraction measurements were performed for all the prepared samples at 300 K in step scanning mode. The analysis of X‐ray data has indicated that the crystal structure of the prepared materials with different compositions is single‐phase polycrystalline materials corresponding to the tetragonal chalcopyrite structure with space group I 2d. The crystal structural parameters were refined by Rietveld method using the Full Prof program. The refined lattice constants (a and c), anion positional parameter, u, and the determined bond distances and angles were found to vary with composition, x, attaining zero tetragonal distortion at x ≈ 0.75, which corresponds to an ideal tetragonal unit cell. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A new type of dicesium disulfur trisulfate, Cs2S2(SO4)3, crystal has been crystallized. Differential scanning calorimetry (DSC) and X‐ray diffraction measurements have been performed on this compound. The crystal does not reveal any structural phase transition in the temperature range from 120 to 920 K. The compound belongs to a cubic system with space group P213 at room temperature. It is found that both Cs and S atoms located on special positions are 93% occupied and 7% in exchange with each other. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Polycrystalline cadmium doped gallium selenide thin films were obtained by the thermal co‐evaporation of GaSe crystals and Cd grains onto glass substrates. The structural, compositional and optical properties of these films have been investigated by means of X‐ray diffraction, energy dispersive X‐ray analysis and UV‐visible spectroscopy techniques, respectively. Particularly, the elemental analysis, the crystalline nature, the energy band gap, the refractive index, the dispersion energy and static dielectric constant have been identified. The absorption coefficient spectral analysis in the sharp absorption region revealed a direct forbidden energy band gap of 1.22 eV. The cadmium doping has caused a significant decrease in the values of the energy band gap and in all the dispersive optical parameters, as well. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The problem of structure investigation of thin films using laboratory XRD diffraction intensities was discussed as a matter of debate. Is the variation in relative intensities of the diffraction patterns due to crystallographic preferred orientation, lattice defects or both? The answer to this question shows a discrepancy in the literatures. The present work is an attempt to propose a possible approach to judge the most probable answer. Thin films of SnO2 were prepared by spray pyrolysis technique using solution of different SnCl2 concentrations (molarity); at fixed substrate temperature and deposition time. The theoretically calculated integrated intensities together with the experimentally obtained and calculated XRD data (relative intensities, texture coefficients and profile analysis) were considered together in order to get the proper picture of the structure characteristics of the prepared films. The complete picture can be assembled by integration and correlation of all the crystallographic information that are extracted from the diffraction pattern including not only the observed intensities but also the size/strain analysis and lattice parameters. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
GeO2 thin films were prepared by sol‐gel method on ITO/Glass substrate. The electrical and optical properties and the microstructures of these films were investigated with special emphasis on the effects of an annealing treatment in ambient air. The films were annealed at various temperatures from 500 °C to 700 °C. Structural analysis through X‐ray diffraction (XRD) and atomic force microscope (AFM) showed that surface structure and morphological characteristics were sensitive to the treatment conditions. The optical transmittance spectra of the GeO2/ITO/Glass were measured using a UV‐visible spectrophotometer. All films exhibited GeO2 (101) orientation perpendicular to the substrate surface where the grain size increased with increasing annealing temperature. The optical transmittance spectroscopy further revealed high transparency (over 70 %) in the wave range 400 – 800 nm of the visible region. At an annealing temperature level of 700 °C, the GeO2 films were found to possess a leakage current density of 1.31×10‐6A/cm2 at an electrical field of 20 kV/cm. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The investigations on the formation of mixed crystals of ammonium dihydrogen orthophosphate (ADP) and potassium dihydrogen orthophosphate (KDP) i.e. potassium ammonium dihydrogen phosphate, K1‐x(NH4)xH2PO4 have been presented in this paper. Pure and mixed crystals of ADP and KDP have been grown by slow evaporation technique from the supersaturated solution at an ambient temperature 26±1 °C for ammonium concentration x in the range 0.0 ≤ x ≤ 1.0 in the case of mixed crystals. Crystal compositions were determined by flame atomic absorption spectroscopy and chemical analysis. The results of the X‐ray analysis of the grown crystals are also reported. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study the kinetic process of dehydration and the high temperature phase behaviour. DTA showed the distinct thermal events attributed to dehydration of ADP, KDP and K1‐x(NH4)xH2PO4. The results of thermal analysis and chemical analysis are consistent with each other. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
ZnO thin films with different Mg doping contents (0%, 3%, 5%, 8%, 10%, respectively) were prepared on quartz glass substrates by a modified Pechini method. XRD patterns reveal that all the thin films possess a polycrystalline hexagonal wurtzite structure. The peak position of (002) plane for Mg‐doped ZnO thin films shifts toward higher angle due to the Mg doping. The crystallite size calculated by Debey‐Scherrer formula is in the range of 32.95–48.92 nm. The SEM images show that Mg‐doped ZnO thin films are composed of dense nanoparticles, and the thickness of Mg‐doped ZnO thin films with Mg doped at 8% is around 140 nm. The transmittance spectra indicate that Mg doping can increase the optical bandgap of ZnO thin films. The band gap is tailored from 3.36 eV to 3.66 eV by changing Mg doping concentration between 3% and 10%. The photoluminescence spectra show that the ultraviolet emission peak of Mg‐doped ZnO thin films shifts toward lower wavelength as Mg doping content increases from 3% to 8%. The green emission peak of Mg‐doped ZnO thin films with Mg doping contents were 3%, 8%, and 10% is attributed to the oxygen vacancies or donor‐acceptor pair. These results prove that Mg‐doped ZnO thin films based on a modified Pechini method have the potential applications in the optoelectronic devices.  相似文献   

19.
In this paper, the chalcopyrite CuInSe2 thin films were fabricated from a selenization of electrodeposited Cu‐In layers. In this study, the electrodeposition time of the In layer was set, but that for the Cu layer was not. The thin films were selenized in a sealed glass tube with pure Se powder by three different Cu layer samples at various electrodeposition times at 500 °C for 2 hours. An FE‐SEM image of the sample shows that the copper‐rich product has irregular agglomerates with a dense surface. The X‐ray diffraction patterns show CuInSe2 peaks for all samples. However, the X‐ray diffraction pattern reveals CuSe2 peaks when the electrodeposition time of the Cu layer increases. On the other hand, the band gap (Eg) of the samples decreases from 1.15 to 1.07 eV when the Cu/In ratio increases.  相似文献   

20.
By using an optical floating zone technology, orthorhombic columbit ZnNb2O6 single crystals are fabricated successfully. The as‐prepared sample are blue and transparent rods of Φ 4 to 6 mm ×L 48 mm and the biggest domain of Φ 4 mm× L 25 mm. After annealing, the sample fades to colorless. X‐ray diffractions indicates that the as‐perpared samples are ZnNb2O6 with orthorhombic columbite structure and grows along the a‐axis. The micropolariscopy in cross transmission arrangements analyzing give that the crystals are of low‐angle crystal boundary‐free and bubble‐free. Besides, the crystals have also been tested by Raman spectra, optical absorption and photoluminescence spectra before and after being annealed. The luminescence pattern has an emission peak located at 450 nm blue‐region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号