Summary: Langevin molecular dynamics (LMD) simulations have been performed in order to understand the role of the short chain branches (SCB) on the formation of ordered domains by cooling ethylene/α-olefins single chain models. Different long single-chain models (C2000) with 0, 5 and 10 branches each 1000 carbons were selected. The branches were randomly distributed along the backbone chain. Furthermore, C1 (methyl) and C4 (butyl) branches were taken into account. These models mimic the molecular architecture of ethylene/1-butene and ethylene/1-hexene random copolymers. The simulations are performed according to the following protocol: 20 random chain conformations for each model were equilibrated at high temperature (T* = 13.3) and then they were cooled in steps of 0.45 until the final temperature (T* = 6.2) by running a total of 35 × 106 LMD steps. The distribution peaks of crystallization for each model were calculated by differentiating the global order parameter with respect to the temperature. The Tc* (crystallization temperature) decrease as the number of branches increases as it is experimentally observed. The formation of order in the copolymers is affected by the type and amount of the SCB in the backbone of the polymer chain. The stem lenght and crystallization fraction (α) were defined using the local-bond order parameter. Both parameters decrease as the number of branches increase. In all cases here shown, the C4 branches are excluded from the ordered domains. However, we have observed that the methyl branch can be incorporated into the ordered regions. These facts satisfactorily agree with experimental data available in the literature. 相似文献
A straightforward method is reported to quantitatively relate structural constraints based on 13C–13C double‐quantum build‐up curves obtained by dynamic nuclear polarization (DNP) solid‐state NMR to the crystal structure of organic powders at natural isotopic abundance. This method relies on the significant gain in NMR sensitivity provided by DNP (approximately 50‐fold, lowering the experimental time from a few years to a few days), and is sensitive to the molecular conformation and crystal packing of the studied powder sample (in this case theophylline). This method allows trial crystal structures to be rapidly and effectively discriminated, and paves the way to three‐dimensional structure elucidation of powders through combination with powder X‐ray diffraction, crystal‐structure prediction, and density functional theory computation of NMR chemical shifts. 相似文献
A solution processible polymer—poly(3,3‴‐didodecylquaterthiophene) (PQT‐12) is investigated at the liquid/solid interface using the scanning tunneling microscopy (STM). Two‐dimensional ordered films made up of self‐assembled domains, with dimensions of 100 nm × 50 nm adsorbed on highly oriented pyrolytic graphite (HOPG) were formed. These domains consist of parallel lamellar polymer chains, with the alkyl chains forming interdigitated structures, along with U‐shaped and closed ring segments of the polymer chains. A polymer chain packing model is proposed herein, which attempts to propose a correlation between the packing of long chains and charge mobilities. These STM results could help in understanding the relationship between the extended conjugation and molecular organization of the PQT‐12 chains.
Diffusion‐ordered multidimensional NMR spectroscopy is a valuable technique for the analysis of complex chemical mixtures. However, this method is very time‐consuming because of the costly sampling of a multidimensional signal. Various sparse sampling techniques have been proposed to accelerate such measurements, but they have always been limited to frequency dimensions of NMR spectra. It is now revealed how sparse sampling can be extended to diffusion dimensions. 相似文献
Understanding the complex thermodynamic behavior of confined amphiphilic molecules in biological or mesoporous hosts requires detailed knowledge of the stacking structures. Here, we present detailed solid‐state NMR spectroscopic investigations on 1‐butanol molecules confined in the hydrophilic mesoporous SBA‐15 host. A range of NMR spectroscopic measurements comprising of 1H spin–lattice (T1), spin–spin (T2) relaxation, 13C cross‐polarization (CP), and 1H,1H two‐dimensional nuclear Overhauser enhancement spectroscopy (1H,1H 2D NOESY) with the magic angle spinning (MAS) technique as well as static wide‐line 2H NMR spectra have been used to investigate the dynamics and to observe the stacking structure of confined 1‐butanol in SBA‐15. The results suggest that not only the molecular reorientation but also the exchange motions of confined molecules of 1‐butanol are extremely restricted in the confined space of the SBA‐15 pores. The dynamics of the confined molecules of 1‐butanol imply that the 1H,1H 2D NOESY should be an appropriate technique to observe the stacking structure of confined amphiphilc molecules. This study is the first to observe that a significant part of confined 1‐butanol molecules are orientated as tilted bilayered structures on the surface of the host SBA‐15 pores in a time‐average state by solid‐state NMR spectroscopy with the 1H,1H 2D NOESY technique. 相似文献
We report the crystal structure of rubidium peroxodicarbonate, which was synthesized by electrocrystallization at T=257 K, from laboratory X-ray powder diffraction data. The compound crystallizes in the monoclinic space group P2(1)/c with four formula units per unit cell and cell parameters of a=7.9129(1), b=10.5117(1), c=7.5559(1) A, beta=102.001(1) degrees, and V=614.75(1) A(3). The packing can be considered as a strongly distorted CsCl type of structure. The conformation of the peroxodicarbonate anion was found to be planar (C(2h) symmetry), in contrast to the staggered conformation of the peroxodicarbonate anion in the respective potassium peroxodicarbonate. The different conformation is attributed to packing effects. 相似文献
A comprehensive dynamic diffusion model is developed to calculate the diffusion coefficients of low molecular weight penetrants (i.e., α‐olefins) in semi‐crystalline polyolefins from dynamic sorption measurements. The model also takes into account the extent of polymer swelling on the penetrant diffusion flux, resulting in a moving boundary value problem. The free volume theory is employed to calculate the dependence of the diffusion coefficient on the penetrant concentration. The solubilities and diffusivities of ethylene and propylene in semi‐crystalline high density polyethylene films were measured at different temperatures and pressures, using a Rubotherm® magnetic suspension microbalance operated in series with an optical view cell for the measurement of the degree of polymer swelling. It is shown that model predictions are in excellent agreement with the experimental dynamic measurements on the mass uptake of the sorbed species. Moreover, it is shown that the proposed model can predict correctly the diffusion coefficient of α‐olefins in semi‐crystalline polyolefins.
A simple and fast way to measure proton self‐diffusion coefficients of small penetrant molecules in semicrystalline polymers is introduced. The approach takes advantage of the strong static gradient of a mobile single‐sided NMR sensor and it is demonstrated on PE samples with varying degrees of crystallinity fully saturated in either toluene or n‐hexane. The self‐diffusion coefficients were measured using the gradient stimulated echo sequence appended with a CPMG. It is also shown for the first time, with demonstration on PE plates several millimeter thick with different aging histories, that one‐dimensional profiles of self‐diffusion coefficients as a function of depth can be easily obtained. 相似文献
2H NMR investigations on the biaxial phase behavior of smectic‐A liquid crystalline side‐chain elastomers are presented. Biaxiality parameters were determined by measuring the quadrupolar splitting of two spin probes, namely benzene‐d6 and hexamethylbenzene‐d18, at various angles between the principal director and the external magnetic field: while for a uniaxial sample the angular dependence can be described by the second Legendre polynomial, an additional asymmetric term needs to be included to fit the data of the two investigated biaxial systems. Two elastomers synthesized from mesogens that differ in the molecular geometry in order to study the molecular origin of biaxiality were compared. Biaxiality is observed for both elastomers when approaching the glass transition, suggesting that the network dynamics dominate the formation of the biaxial phase.
We present the successful application of a concerted approach for the investigation of the local environment in ordered and disordered phases in the solid state. In this approach we combined isotope labeling with computational methods and different solid-state NMR techniques. We chose triphenylphosphite (TPP) as an interesting example of our investigations because TPP exhibits two crystalline modifications and two different amorphous phases one of which is highly correlated. In particular we analyzed the conformational distribution in three of these phases. A sample of triply labeled 1-[13C]TPP was prepared and 1D MAS as well as wide-line 13C NMR spectra were measured. Furthermore we acquired 2D 13C wide-line exchange spectra and used this method to derive highly detailed information about the phenyl orientation in the investigated TPP phases. For linkage with a structure model a DFT analysis of the TPP molecule and its immediate environment was carried out. The ab initio calculations of the 13C chemical shift tensor in three- and six-spin systems served as a base for the calculation of 1D and 2D spectra. By comparing these simulations to the experiment an explicit picture of all phases could be drawn on a molecular level. Our results therefore reveal the high potential of the presented approach for detailed studies of the mesoscopic environment even in the challenging case of amorphous materials. 相似文献
1H‐detection can greatly improve spectral sensitivity in biological solid‐state NMR (ssNMR), thus allowing the study of larger and more complex proteins. However, the general requirement to perdeuterate proteins critically curtails the potential of 1H‐detection by the loss of aliphatic side‐chain protons, which are important probes for protein structure and function. Introduced herein is a labelling scheme for 1H‐detected ssNMR, and it gives high quality spectra for both side‐chain and backbone protons, and allows quantitative assignments and aids in probing interresidual contacts. Excellent 1H resolution in membrane proteins is obtained, the topology and dynamics of an ion channel were studied. This labelling scheme will open new avenues for the study of challenging proteins by ssNMR. 相似文献
Solid‐state NMR is a powerful tool for studying membrane proteins in a native‐like lipid environment. 3D magic angle spinning (MAS) NMR was employed to characterize the structure of E.coli diacylglycerol kinase (DAGK) reconstituted into its native E.coli lipid membranes. The secondary structure and topology of DAGK revealed by solid‐state NMR are different from those determined by solution‐state NMR and X‐ray crystallography. This study provides a good example for demonstrating the influence of membrane environments on the structure of membrane proteins. 相似文献