首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
InAs co‐doped ZnO films were grown on sapphire substrates by pulsed laser deposition. The grown films have been characterized using X‐ray diffraction (XRD), Hall effect measurements, Atomic force microscope (AFM) and Field emission scanning electron microscope (FESEM) in order to investigate the structural, electrical, morphological and elemental properties of the films respectively. XRD analysis showed that all the films were highly orientated along the c‐axis. It was observed from Hall effect measurements that InAs co‐doped ZnO films were of n‐type conductivity. In addition, the presence of In and As has been confirmed by Energy dispersive X‐ray analysis. AFM images revealed that the surface roughness of the films was decreased upon the co‐doping. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
ZnO/Co multilayers were fabricated on silicate (100) substrate by a pulsed laser deposition method at room temperature. The x‐ray diffraction (XRD) results reveal that the as‐deposited multilayer film is composed of amorphous phase, which leads to high saturation magnetization and low coercivity. Higher coercivity is observed in the ZnO/Co films annealed at 390 °C due to the formation of crystalline metallic Co and semiconducting ZnO. But much higher annealing temperature leads to the oxidation of metallic Co and the reaction between Co and ZnO, which decreases the saturation magnetization and coercivity obviously.  相似文献   

3.
The effect of film thickness and substrate orientation on ferromagnetism in Mn doped ZnO thin films have been studied. The Mn doped ZnO films of different thickness (15, 35 and 105 nm) have been grown on both Si (100) and Si (111) substrates. The structural, electrical, optical, elemental and magnetic properties of the films have been investigated by X‐ray diffraction (XRD), Hall Effect measurements, photoluminescence (PL), energy dispersive spectroscopy (EDS) and vibrating sample magnetometer (VSM), respectively. It is found that all the properties are strongly influenced by the film thickness and substrate orientation. The XRD analysis confirmed that the formation of high quality monophasic hexagonal wurtzite structure for all the grown films. The room temperature VSM measurements showed that the films of lower thickness have better ferromagnetism than that of the thicker films grown on both the substrates. Among the lower thickness films, the film grown on Si (111) substrate has higher saturation magnetization (291×10‐5 emu cm‐3) due to high density of the defects. The observed ferromagnetism has been well justified by XRD, Hall measurements and PL. The presence of Mn atoms in the film has been confirmed by EDS. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Vanadium (V) doped ZnO thin films (Zn1‐xVx O, where x = 0, 0.05, 0.10) have been grown on sapphire substrates by RF magnetron sputtering to realize room temperature ferromagnetism (RTFM). The grown films have been subjected to X‐ray diffraction (XRD), resonant Raman scattering, photoluminescence (PL) and vibrating sample magnetometer (VSM) measurements to investigate their structural, optical and magnetic properties, respectively. The full width at half maximum of XRD and Raman scattering peaks increases with V ion concentration indicates that the V ions have been substituted on Zn2+ ions in the ZnO matrix. The increase in oxygen vacancies with V concentration is evidenced by PL measurements. Rutherford backscattering spectrometry analysis confirms the presence of the V ions in the films. The room temperature VSM measurements reveal the signature of ferromagnetism in V doped ZnO thin films. It has been observed that the grain boundary defects, i.e., oxygen vacancies play a crucial role in inducing RTFM in V doped ZnO films. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
采用电场辅助电化学沉积的方法成功的在阳极氧化铝模板中沉积出ZnO纳米线阵列.透射电子显微镜(TEM)、X射线衍射(XRD)测试结果表明,制备的纳米线是单晶ZnO纳米线,形貌均匀,直径大约为60nm,并且择优于(101)晶面.我们对生长过程中所加辅助电场的作用给出了初步的解释.  相似文献   

6.
Zn1‐xCux O powders were synthesized by using sol‐gel method. Electronic band structure and ferromagnetic properties of Zn1‐xCux O powders were studied experimentally and theoretically. The simulations are based upon the Perdew‐Burke‐Ernzerhof form of generalized gradient approximation within the density functional theory. Zn1‐xCux O shows dilute ferromagnetism, as a saturated magnetization of 0.9×10‐3emu/g was observed for Zn0.95Cu0.05O powders. The strong pd hybridization between Cu and its four neighbouring O atoms is responsible for the ferromagnetism. Comparing with ZnO whose Fermi level locates at the valence band maximum, the Fermi level of the Zn1‐xCux O shifts upward into the valence band and hence the Zn1‐xCux O system exhibits theoretically a p ‐type metallic semiconducting property. The Zn1‐xCux O system may be a potential candidate in spintronics. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
ZnO thin films with various Co doping levels (0%, 1%, 3%, 5%, 8%, respectively) have been synthesized by sol gel spin coating method on glass substrates. XRD and XPS studies of the films reveal that cobalt ions are successfully doped into ZnO crystal lattice without changing the hexagonal wurtzite structure. The morphologies are studied by SEM and AFM and show wrinkle network structures with uniform size distribution. With Co doping concentration increasing, the wrinkle network width decreases gradually. The transmittance spectra indicate that Co doping can effectively reduce the optical bandgap of ZnO thin films. Photoluminescence show that all samples have ultraviolet, violet and green emission. When Co doping concentration increases up to 5%, the intensity of violet emission is greatly increased and a strong deep blue emission centered at 439 nm appears. The ferromagnetism of all samples was observed at room temperature. The emission mechanisms and ferromagnetism origination are discussed in detail. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
An original modification of the standard Pulse Laser Deposition (PLD) method for preparing both undoped and indium doped zinc oxide (ZnO:In) thin films at low substrate temperature is proposed. This preparation method does not demand any further post‐deposition annealing treatment of the grown films. The developed method allows to grow thin films at low substrate temperature that prevents them from the considerable loss of their intrinsic electrical and optical properties. The influence of deposition parameters on the electrical and optical parameters of the undoped and the indium doped ZnO thin films is also analysed. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Nd‐doped ZnO nanoparticles with different concentration were synthesized by sol‐gel method. The structures, magnetic and optical properties of as‐synthesized nanorods were investigated. X‐ray diffraction (XRD) and x‐ray photoelectron spectroscopy (XPS) results demonstrated that Nd ions were incorporated into ZnO lattice; but Zn1‐xNdxO nanoparticles with Nd concentration of x = 0.05 showed Nd2O3 phase, so the saturation concentration of Nd in Zn1‐xNdxO is less than 5 at%. Vibrating sample magnetometer (VSM) measurements indicated that Nd doped ZnO possessed dilute ferromagnetis behaviour at room temperature. Photoluminescence spectroscopy (PL) showed that Nd ions doping induced a red slight shift and decrease in UV emission with increase of Nd concentration.  相似文献   

10.
ZnO thin films with different Mg doping contents (0%, 3%, 5%, 8%, 10%, respectively) were prepared on quartz glass substrates by a modified Pechini method. XRD patterns reveal that all the thin films possess a polycrystalline hexagonal wurtzite structure. The peak position of (002) plane for Mg‐doped ZnO thin films shifts toward higher angle due to the Mg doping. The crystallite size calculated by Debey‐Scherrer formula is in the range of 32.95–48.92 nm. The SEM images show that Mg‐doped ZnO thin films are composed of dense nanoparticles, and the thickness of Mg‐doped ZnO thin films with Mg doped at 8% is around 140 nm. The transmittance spectra indicate that Mg doping can increase the optical bandgap of ZnO thin films. The band gap is tailored from 3.36 eV to 3.66 eV by changing Mg doping concentration between 3% and 10%. The photoluminescence spectra show that the ultraviolet emission peak of Mg‐doped ZnO thin films shifts toward lower wavelength as Mg doping content increases from 3% to 8%. The green emission peak of Mg‐doped ZnO thin films with Mg doping contents were 3%, 8%, and 10% is attributed to the oxygen vacancies or donor‐acceptor pair. These results prove that Mg‐doped ZnO thin films based on a modified Pechini method have the potential applications in the optoelectronic devices.  相似文献   

11.
The bulk samples of Mn‐doped ZnO were synthesized with the nominal compositions Zn1‐xMnxO (x = 0.02, 0.05, 0.10, 0.15) by the solid‐state reaction and sol‐gel methods. In both the methods the samples were finally sintered at ∼700 °C in air. The X‐ray diffraction (XRD) studies of the samples synthesized by the solid‐state reaction method exhibit the presence of wurtzite (hexagonal) crystal structure similar to the parent compound (ZnO) in all the samples, suggesting that doped Mn ions sit at the regular Zn sites. However, same studies spread over the samples with Mn content ≥5% and synthesized by the sol‐gel method reveal the occurrence of some secondary phase in addition to the majority wurtzite phase. The magnetic measurements by vibrating sample magnetometer (VSM) clearly indicate ferromagnetic interaction at room temperature in all the samples. The Curie temperatures (Tc) and magnetization vary with concentration of Mn ions in the samples. However, the samples synthesized by sol‐gel method were found to have lower Tc values and also lower magnetization as compared to the corresponding samples synthesized by solid‐state reaction method. It could possibly be due to the presence of antiferromagnetic islands and smaller crystallite sizes in the samples prepared by sol‐gel method. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
本文利用等离子体辅助分子束外延(P-MBE)技术在蓝宝石 (Al2O3) 衬底上生长了Mg0.12Zn0.88O(100nm)/ZnO (20nm) /Mg0.12Zn0.88O (40nm) 异质结构,测得样品的X射线衍射谱表明,在34.56°的位置出现很强的(002)方向衍射峰,其半高宽度为0.20°,比Mg0.12Zn0.88O合金薄膜的半高宽度0.15°明显展宽.通过光致发光谱研究了MgZnO/ZnO/MgZnO异质结构的光学性质,室温下测得在370nm(3.35eV)位置有很强的紫外发光,而在348nm (3.56eV)的位置处有一个较弱的发光,这两个峰分别被归结于来自ZnO层和MgZnO盖层的发光.室温下的吸收光谱中,在上述两个峰的位置附近分别存在很明显的吸收,指示了带边吸收来自于MgZnO和ZnO两种材料.通过变温发光谱研究了异质结构中载流子弛豫、复合的规律.随着温度增加,来自于ZnO层和MgZnO层的发光强度比增加,这归结为MgZnO/ZnO异质结构存在界面势垒所致.  相似文献   

13.
采用水热法以CoO、ZnO混合为前驱物制备了ZnO晶体,矿化剂为6 mol/L KOH,填充度70;,温度430℃,两种样品CoO、ZnO组分物质的量百分比分别为0.5∶1和1∶1.当前驱物为nCo∶nZn=0.5∶1时,合成出Zn1-xCoxO晶体,Co元素掺杂量分别为6.83 at;和9.30 at;.当前驱物中nCo∶nZn=1∶1时,Zn1-xCoxO晶体中Co掺杂比例达到9.31 at;,同时伴有Co3O4生成,其中Zn掺杂比例达到14.59 at;,SEM显示,所制备的Zn1-xCoxO具有明显的ZnO晶体特征,形态完整,最大尺度约为50 μm.SQUID测量显示,生成物中Zn1-xCoxO晶体具有顺磁性,Zn1-xCoxO和Co3-xZnxO混合晶体也显示为顺磁性.  相似文献   

14.
Large‐yield zinc oxide (ZnO) nanosized tetrapods have been obtained by a standard vapour‐phase growth technique to which a few modifications have been added, such as the separation of the Zn source evaporation region from the Zn oxidation region inside the reactor setup. This modification allows to keep the growth conditions constant and continuous for a long time, thus favouring the obtainment of large amounts of ZnO tetrapod nanostructures. As some contaminations usually occur due to metallic Zn particles and/or different ZnO nanostructures, including not completely reacted ZnO1‐x solid phases, they can be removed by a three‐step “purification” procedure as described in the article. Further to that, a deposition method from suitable liquid suspensions is also reported, which allows to produce homogeneous distributions of ZnO tetrapods on large substrate areas. The proposed procedures are expected to be particularly appropriate for a large production of samples for device use. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Aluminum‐doped zinc oxide (AZO) thin films were deposited on sapphire (002) and glass substrates by two different sputtering techniques radio frequency magnetron cosputtering of AZO and ZnO targets and sputtering of an AZO target. The dependence of the photoluminescence (PL) and transmittance properties of the AZO films deposited by cosputtering and sputtering on the AZO/ZnO target power ratio, R and the O2/Ar flow ratio, r were investigated, respectively. Only a deep level emission peak appears in the PL spectra of cosputtered AZO films whereas both UV emission and deep level emission peaks are observed in the PL spectra of sputtered AZO films. The absorption edges in the transmittance spectra of the AZO films shift to the lower wavelength region as R and r increase. Also effects of crystallinity, surface roughness, PL on the transmittance of the AZO films were explained using the X‐ray diffraction (XRD), atomic force microscopy (AFM), and PL analysis results. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In this paper, a template free method has been employed to fabricate porous ZnO. Brick shaped precursor was first synthesized by a mild hydrothermal process. Accompanied with the decomposition of the precursor during the subsequent annealing treatment, porous ZnO with the inherited morphology of the precursor was obtained. The as‐prepared products were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). It exhibited that the porous hierarchical frame consists of nano‐sheets with wurtzite‐type. The size of the pores as well as the size of the particles varied with the annealing temperature. Mechanism speculation showed that the crystal‐aggregation in the growth process of the precursor is the key to the establishment of pore structure. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
In this paper, copper dendrites decorated with ZnO rods have been electrolessly deposited on brass substrate by a simple galvanic replacement method. SEM images show that these copper dendrites possess a pronounced trunk and highly ordered branches distributed on both sides of the trunk. Meanwhile, both the trunk and branches are decorated with ZnO rods. The diffusion‐limited aggregation (DLA) model has been used to explain the fractal growth of Cu dendritic structures. This method provides a facile route to the synthesis of copper dendrites with ZnO, which can be extended to the preparation of other forms three‐dimensional (3‐D) metal structures or metal/ZnO composites by modifying electrolyte parameters such as composition, concentration, pH and temperature. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We investigate the characteristics of thermally annealed ZnO nanotip in various ambient. AZO seed layer was first prepared on glass substrate by RF sputtering. A vertically oriented ZnO nanotip array was grown on AZO seed layer/glass by chemical bath deposition with precursors of zinc nitrate and ammonia at 70 °C. By thermal annealing in N2O ambient at 300 °C for 1 hour, the characteristics of ZnO nanotip array were improved and the ultraviolet sensor shows the best rise time of 50 s, decay time of 70 s and on/off current ratio of 26.04.  相似文献   

19.
Highly crystallized BaMoO4 films were prepared on molybdenum substrates in Ba(OH)2 solutions by electrochemical method at room temperature. The deposition conditions (reaction temperature and current density) during electrochemical formation were researched. The films were characterized by using the X‐ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) and X‐ray Photoelectron Spectroscopy (XPS) analyses. The XRD analyses show that the films are good crystalline with single scheelite‐type tetragonal structure; the SEM photographs show that the films are densely deposited with double tetragonal tapers in shape; and the XPS analyses reveal that the composition of the BaMoO4 films (embodied Ba2+, Mo6+ and O2‐) is in agreement with stoichiometry. The optimum electrochemical conditions for BaMoO4 films formation are the lower reacting temperature (near room temperature) and the feasible current density (about 1mA/cm2)  相似文献   

20.
Effects of substrate temperature and atmosphere on the electrical and optical properties of Ga‐doped ZnO thin films deposited by rf magnetron sputtering were investigated. The electrical resistivity of Ga‐doped ZnO (GZO) films decreases as the substrate temperature increases from room temperature to 300°C. A minimum resistivity of 3.3 × 10–4 Ω cm is obtained at 300°C and then the resistivity increases with a further increase in the substrate temperature to 400°C. This change in resistivity with the substrate temperature is related to the crystallinity of the GZO film. The resistivity nearly does not change with the O2/Ar flow ratio, R for R < 0.25 but increases rapidly with R for R > 0.25. This change in resistivity with R is also related to crystallinity. The crystallinity is enhanced as R increases, but if the oxygen partial pressure is higher than a certain level (R = 0.25 ± 0.10) gallium oxides precipitate at grain boundaries, which decrease both carrier concentration and mobility. Optical transmittance increases as R increases for R < 0.75. This change in transmittance with R is related to changes in oxygen vacancy concentration and surface roughness with R. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号