首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electrostatic complex of water‐soluble conjugated polyelectrolytes (CPs) between anionic poly(9,9‐bis(4′‐sulfonatobutyl)fluorene‐co‐alt‐1,4‐phenylene) disodium salt (a‐PFP) and cationic poly(9,9‐bis((6′‐N,N,N,‐trimethylammonium)hexyl)fluorene‐co‐2,1,3‐bezothiadiazole) dibromide (85:15) (c‐PFB15) was tested as a fluorescence resonance energy transfer (FRET) donor to Texas Red (TR)‐labeled single‐stranded DNA (ssDNA‐TR) via two‐step FRET processes. Electrostatic complexation of a‐PFP and c‐PFB15 in water leads to aggregation of polymer chains, a concomitant reduction of intersegment distances, and energy transfer to the benzothiadiazole (BT) segments. The following complexation with ssDNA‐TR leads to energy transfer from BT to TR via two‐step FRET processes. This detection schematic shows an FRET‐induced signal amplification, which can be achieved by adjusting the charge ratio in the cationic/anionic CP complex and controlling the number density of the binding CPs around the acceptor, resulting in enhanced antenna effects and sensitivity in CP‐based FRET DNA detection assays.

  相似文献   


2.
A cationic water‐soluble conjugated polyelectrolyte, poly[9,9‐bis(6′′‐(N,N,N‐trimethylammonium)hexyl)fluorene‐co‐alt‐2,5‐bis(6′‐(N,N,N‐trimethylammonium)hexyloxyphenylene) tetrabromide], was synthesized. Fluorescence resonant energy transfer (FRET) experiments between the polymer and fluorescein‐labeled single‐stranded DNA (ssDNA‐Fl) were conducted in aqueous buffer and THF/buffer mixtures. Weak fluorescence emission in aqueous buffer was observed upon excitation of the polymer, whereas addition of THF turned on the fluorescence. Fluorescence self‐quenching of ssDNA‐Fl in the ssDNA‐Fl/polymer complexes as well as electron transfer from the polymer to fluorescein may account for the low fluorescence emission in buffer. The improved sensitization of fluorescence by the polymer observed in THF/buffer could be attributed to the weaker binding between the polymer and ssDNA‐Fl and a decrease in dielectric constant of the solvent mixture, which disfavors electron transfer. THF‐assisted signal sensitization was also observed for the polymer and fluorescein‐labeled double‐stranded DNA (dsDNA‐Fl). These results indicate that the use of cosolvent provides a strategy to improve the detection sensitivity for biosensors based on the optical amplification provided by conjugated polymers.  相似文献   

3.
4.
We report a macromolecular end‐capping approach to improve the detection sensitivity of cationic conjugated polymer (CCP) based DNA detection. A phenylethynyl anthracene (PEA) end‐capped cationic polyfluorene (PF) derivative ( P1 ) is synthesized via Suzuki coupling. Due to efficient fluorescence resonance energy transfer (FRET) from the polymer backbone to the end‐capper PEA units, the polymer ( P1 ) fluorescence is dominated by the emission from PEA even in dilute aqueous solution. P1 emission has a better spectral overlap with fluorescein (Fl) absorption compared to that for uncapped PF ( P2 ). In addition, the intra and intermolecular energy transfer for P1 is more efficient in the presence of DNA due to complexation‐induced polymer aggregation. These impart a combinatorial FRET between P1 and an Fl‐labeled probe which is more efficient than that between P2 and the same probe. P1 thus offers a better DNA detection sensitivity relative to P2 and opens up new opportunities to improve the performance of CCP based biosensors involving FRET.

  相似文献   


5.
A ‘grafting‐from’ approach to synthesize microparticle‐supported conjugated polyelectrolyte brushes is presented. Poly(3‐bromohexylthiophene) is selectively grown from monodisperse organosilica microparticles by surface‐initiated Kumada catalyst‐transfer polycondensation (SI‐KCTP) and then ionizable amino groups are introduced by a two‐step polymer analogous transformation. Optical properties of the resulting microparticle‐supported conjugated polyelectrolyte brushes were found to be dependent on the surrounding chemical environment and thus the particles are promising materials for sensor applications.

  相似文献   


6.
Drugs turn the light off : Conjugated polyelectrolytes (CPEs) have been used in fluorescent assays for real‐time screening of small molecules that prevent the RNA–protein complexation that is important for virus replication and thereby can be considered potential initial candidates for drug discovery (see picture).

  相似文献   


7.
A new cationic cyano‐substituted poly(p‐phenylenevinylene) (N‐CNPPV) is synthesized by Knoevenagel condensation. The water‐soluble polymer shows different emission spectra in different solvents and displays unique fluorescent behaviors in the mixed solvents of water and THF. The new polymer can form a complex with ssDNA by adopting a more planar conformation, exhibiting red shift of emission wavelength and enhancement of fluorescence intensity. By investigating the fluorescent response of N‐CNPPV to various surfactants, we demonstrate that the hydrophobic interaction and electrostatic interaction result in the selective response of N‐CNPPV to ssDNA. This is the first report on selective fluorescence enhancement of conjugated polyelectrolyte induced by ssDNA.  相似文献   

8.
9.
A new donor‐acceptor‐acceptor (D‐A‐A) type of conjugated molecule, N‐(4‐(N′,N′‐diphenyl)phenylamine)‐4‐(4′‐(2,2‐dicyanovinyl)phenyl) naphthalene‐1,8‐dicarboxylic monoimide ( TPA‐NI‐DCN ), consisting of triphenylamine (TPA) donors and naphthalimide (NI)/dicyanovinylene (DCN) acceptors was synthesized and characterized. In conjunction with previously reported D ‐A based materials, the additional DCN moiety attached as end group in the D‐A‐A configuration can result in a stable charge transfer (CT) and charge‐separated state to maintain the ON state current. The vacuum‐deposited TPA‐NI‐DCN device fabricated as an active memory layer was demonstrated to exhibit write‐once‐read‐many (WORM) switching characteristics of organic nonvolatile memory due to the strong polarity of the TPA‐NI‐DCN moiety.  相似文献   

10.
Enzyme assays are receiving more and more research and application interest because of the rapidly increasing demands of clinical diagnosis, environmental analysis, drug discovery, and molecular biology. Water‐soluble light‐harvesting conjugated polymers (CPs) coordinate the action of a large number of absorbing units to afford an amplified fluorescence signal, which makes them useful as optical platforms in highly sensitive chemical and biological sensors. This Feature Article highlights recent developments of water‐soluble CPs for fluorescent assays of enzymes. Different signal transduction mechanisms, such as electron transfer, fluorescence resonance energy transfer (FRET), and aggregation or conformation changes of CPs, are employed in these assays according to the dissimilar nature of enzymes. Potential challenges and future research directions in these approaches based on CPs are also discussed.

  相似文献   


11.
12.
13.
BODIPY dyes have attracted considerable attention as potential photosensitizers in dye‐sensitized solar cells (DSSCs) owing to their excellent optical properties and facile structural modification. This account focuses on recent advances in the molecular design of D‐π‐A BODIPY dyes for applications in DSSCs. Special attention has been paid to the structure‐property relationships of D‐π‐A BODIPY dyes for DSSCs. The developmental process in the modified position at the BODIPY core with a donor/acceptor is described. The devices based on 2,6‐modified BODIPY dyes exhibit better photovoltaic performance over other modified BODIPY dyes. Meanwhile, the research reveals the correlation of molecular structures (various donor chromophores, extended units, molecular frameworks, and long alkyl groups) with their photophysical and electrochemical properties and relates it to their performance in DSSCs. The structure‐property relationships give valuable information and guidelines for designing new D‐π‐A BODIPY dyes for DSSCs.

  相似文献   


14.
A highly efficient colorimetric and fluorescence turn‐off probe for the sensitive and selective detection of the biologically important amino acid, cysteine (Cys), is demonstrated using a newly synthesized water‐soluble hyperbranched polymer (HP) containing sulfonic acid groups. The detection mechanism involves two steps: (i) the slight quenching of HP in the presence of Co2+ in advance; and (ii) the gradual quenching of the HP–Co2+ complex according to the concentration of Cys due to the absorption screening effect of the formation of the Cys‐Co2+ complex, which prevents HP from absorbing excitation energy.  相似文献   

15.
Dye sensitized solar cells (DSSCs) and bulk heterojunction (BHJ) solar cells have been the subject of intensive academic interest over the past two decades, and significant commercial effort has been directed towards this area with the vison of developing the next generation of low cost solar cells. Materials development has played a vital role in the dramatic improvement of both DSSC and BHJ solar cell performance in the recent years. Organic conjugated polymers and small molecules that absorb solar light in the visible and near infrared (NIR) regions represent a class of emering materials and show a great potential for the use of different optoelectronic devices such as DSSCs and BHJ solar cells. This account describes the emering class of near infrared (NIR) organic polymers and small molecules having donor and acceptors units, and explores their potential applications in the DSSCs and BHJ solar cells.  相似文献   

16.
High‐performance Förster resonance energy transfer (FRET)‐based dye‐sensitized solar cells (DSSCs) have been successfully fabricated through the optimized design of a CdSe/CdS quantum‐dot (QD) donor and a dye acceptor. This simple approach enables quantum dots and dyes to simultaneously utilize the wide solar spectrum, thereby resulting in high conversion efficiency over a wide wavelength range. In addition, major parameters that affect the FRET interaction between donor and acceptor have been investigated including the fluorescent emission spectrum of QD, and the content of deposited QDs into the TiO2 matrix. By judicious control of these parameters, the FRET interaction can be readily optimized for high photovoltaic performance. In addition, the as‐synthesized water‐soluble quantum dots were highly dispersed in a nanoporous TiO2 matrix, thereby resulting in excellent contact between donors and acceptors. Importantly, high‐performance FRET‐based DSSCs can be prepared without any infrared (IR) dye synthetic procedures. This novel strategy offers great potential for applications of dye‐sensitized solar cells.  相似文献   

17.
Two new FRET pairs, warfarin (WF)–curcumin (CUR) and curcumin–rhodamine B (RhB), are explored by using surfactant‐based self‐assembled soft systems as scaffolds. The study is extended to design a two‐step concurrent FRET system based on these three fluorophores, which is an important mechanism to devise artificial light‐harvesting/antenna systems. Surfactant systems of varying nature (cationic, anionic, nonionic, and zwitterionic) are exploited to modulate the energy transfer in different FRET systems. Interestingly, micelle/water interfacial‐charge‐responsive FRET is observed owing to selective solubilization of the fluorophores during co‐solubilization. The step‐one FRET (WF→CUR) is switched on in cationic and zwitterionic media but switched off in anionic/nonionic media, whereas the step‐two FRET from CUR to RhB is switched on in anionic/nonionic and zwitterionic media. However, both the FRET steps (WF→CUR→RhB) are observed to be active only in zwitterionic medium. Co‐solubilized, appropriately mixed fluorophores having multistep FRET possibilities can be switched on/off selectively as and when required and energy efficiency can be tuned to an optimal level by varying the nature and geometry of the micellar scaffold. Thus, the two FRET pairs selectively acknowledge all types of media for their anticipated applications in biological systems, as structural tools, and for the development of artificial light‐harvesting/antenna systems and lasers.  相似文献   

18.
We report a feasibility study for the application of our newly developed highly efficient and robust fluorescence‐resonance‐energy‐transfer (FRET) system to DNA. A 2′‐oligodeoxynucleotide, 12 , equipped with a quinolinone derivative as donor and a (bathophenanthroline)ruthenium(II) complex as acceptor and having a single uridine as potential cleavage site under basic conditions revealed an intensive FRET, which almost vanished after cleavage of the oligonucleotide under basic conditions (Fig. 7). Furthermore, in the arrangement of a molecular beacon (MB) DNA (see 13 ), a significant decrease of the FRET was observed after hybridization to a target sequence (Fig. 9). Due to the long decay times of the fluorescence of the Ru‐complex, the system allows for highly sensitive time‐gated measurements.  相似文献   

19.
20.
Two water‐soluble cationic conjugated polyelectrolytes ( P1 and P2 ) containing diacetylene, diketopyrrolopyrrole (DPP), and fluorene units were synthesized with Glaser‐Hay coupling reaction as the key step. The narrow bandgap DPP units and the wide bandgap fluorene units in the cationic polyelectrolytes might form an energy donor‐acceptor molecule architectures, in which DPP units serve as an acceptor of the fluorescent resonance energy transfer. The addition of calf thymus DNA enhances the fluorescent resonance energy transfer from fluoreneethynylene segments to DPP units, which results in a sensitive color change from blue to red in the PL spectra and allows naked‐eye detection of DNA with low concentration. In addition, the detection of DNA with P1 and P2 is high selective because it is not interfered by common ions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号