首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethylene oxide catalyst is a high metal loading catalyst, in which silver crystals is impregnated on α‐Al2O3 support. In this type of catalyst, metal dispersion plays an important role on catalyst selectivity for desired products. In this work, silver nitrate and silver oxide together with oxalic and lactic acid as the raw materials were used with different impregnation techniques to make catalysts with high silver content and dispersion. It is also known that the use of promoters affect the metal dispersion on the catalyst support and for that cesium was used as the promoter to improve the silver crystal dispersion. Physical and chemical characteristics of the prepared catalysts, i.e., surface area, pore volume, silver content, nano‐sized silver crystals and their dispersion were measured using BET method, Atomic Absorption Spectroscopy, X‐ray diffraction and TEM. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The thermal behavior of the bovine bone mineral and synthetic stoichiometric hydroxyapatite was investigated by X‐ray diffraction. The bone samples in solid (planar oriented pieces) and in powder form were examined to elucidate how the microstructural and textural properties of bone mineral are modified under heating. As could be expected, the thermal behavior of the bone mineral depends not only on the structural distortions, but also on the crystal habit, texture and ordering of biocrystals in tissue. The temperature growth of biogenic apatite crystals, unlike synthetic hydroxyapatite, is seen to be nonmonotonic and multi‐staged. At 600 to 700°C the biomineral crystallites grow rapidly due to disappearance of the mosaic structure as the lattice imperfections are annealed. After heating between 700°C and 900°C the bone mineral appears to be composed of roughly equidimensional ≥200 nm crystals. The further growth of the crystals in the range from 900 to 1300°C occurs by the mass transport mechanism, supporting the idea that the bone mineral is not a discrete aggregation of crystals, but rather a continuous mineral phase with direct crystal‐crystal bonding. Estimates are presented to show the important role of the surface mass transport mechanism in the growth of apatite crystals. The material obtained by heating a cortical bone fragment between 900°C and 1300°C turns out to be composed of two crystal types: crystals oriented along the bone axis (major morphology) and those of differing shape and orientation (minor morphology). The heating‐induced variations in the longitudinal and transverse dimensions of differing‐morphology crystals are found to be coherent. Small amounts of CaO, MgO and other crystalline phases are seen to be formed in the bone mineral under heating. © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

3.
Morphological characteristics and twinning mechanism of ZnS crystals under hydrothermal conditions have been investigated in this paper. It was shown that under hydrothermal conditions the morphology of ZnS crystallites changes along the four‐fold axis directions, and the crystals are observed in a positive or negative tetrahedron, or in a combination of positive and negative tetrahedra depending on the growth conditions. The positive tetrahedral areas on the crystallites get larger with increase of the concentrations of OH and S2‐ in solutions, whereas the twinned crystallites of ZnS taking an elliptic shape with (111) as composition plane are easily formed in weak basic solutions. It can be found that the morphologies of ZnS crystals are in accordance with the crystallization orientations of positive or negative coordination tetrahedra ([S‐Zn4]6+, [Zn‐S4]6‐) in the crystal although, in some cases, the practical morphology could be greatly affected by growth conditions, and the twinning mechansim can be suggested based on the linkage of growth units of positive and negative coordination tetrahedra, which were formed in the solution. The present investigations further indicated that the crystal chemistry approach based on the linkage/incorporation of growth units previously proposed by us can be sucessfully applied to interpret the growth mechanisms of the crystals and to control a desirable morphology.  相似文献   

4.
5.
The Ag nanoparticles with different morphology are directly prepared on Si surface by a facile silver mirror reaction without capping agents and shape‐controlling seeds. Ag nanoplates and Ag polyhedrons are produced on the Si surface by controlling the reaction temperature. Ag nanoplates are easily obtained at the low temperature, which are the products controlled by kinetics pathway. Ag polyhedrons are produced at the high temperature under the combined action of the surface energy and strain energy. Through the catalysis of Ag nanoplates and Ag polyhedrons, different nanoporous structures on the Si surface are obtained using the same etching process, which are useful for the antireflection layers in solar‐cell devices.  相似文献   

6.
Rhombic single crystals of silver (I) chromate were grown in silica gels. They were of tabular shape with a size of a = 0.3, b = 30 and c = 3 mm. The morphology of the crystals was interpreted by a detailed discussion of the structure. Silver (I) chromate consists of (100) layers connected along the a-axis by silver atoms in octahedral coordination. The crystals were characterized by their powder diffraction data. Differential thermal analysis studies were made by use of single crystals. The enthalpy of the phase transformation taking place at 485.2 °C is found to be ΔHtr = 8.8 kJ/mol.  相似文献   

7.
The morphology of gold nanoparticles was controlled with hydrogentetrachloroaurate (HAuCl4) and xylitol through a hydrothermal process using xylitol as reducing agent and controlled reagent. The molar ratio of xylitol relative to HAuCl4, reaction time and temperature played important roles in determining the geometric shape and size of the product. These nanoplates were single crystals with planar width of 80‐500 nm. The formation of nanobelts and two‐dimensional single‐crystal nanosheets is explained by the preferential adsorption of xylitol molecules from the solution onto the {111} planes of Au nuclei. These nanosheets could be used, for example, in gas sensors, in the fabrication of nanodevices and substrate materials, in property studies, and also for inducing hypothermia in tumors. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
SiC crystals of high structural perfection were investigated with several methods of X‐ray diffraction topography in Bragg‐case geometry. The methods included section and projection synchrotron white beam topography and monochromatic beam topography. The investigated 6H and 4H samples contained in large regions dislocations of density not exceeding 103 cm‐2. Most of them cannot be interpreted as hollow core dislocations (micro‐ or nano‐pipes). The concentration of the latter was lower than 102 cm‐2. The present investigation confirmed the possibility of revealing dislocations with all used methods. The quality of presently obtained Bragg‐case multi‐crystal and section images of dislocation enabled analysis based on comparison with numerically simulated images. The analysis confirmed the domination of screw‐type dislocations in the investigated crystals. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Heterogeneous (on‐glass) protein crystal nucleation was separated from the bulk one in systems of thin protein solution layers, confined between two glass plates of custom made quasi two‐dimensional all‐glass cells, as well as by applying forced protein solution flow. Two commercial samples of hen‐egg‐white lysozyme, Seikagaku and Sigma were used as model proteins. Applying the classical technique of separation in time of nucleation and growth stages with protein solution layers of thickness 0.05 cm we found that the on‐glass crystal nucleation prevailed highly with Seikagaku HEWL, while on the opposite, bulk nucleated crystals represented the main crystal fraction in Sigma solution. Also using 0.05 cm solution layers nucleation rates were measured separately for the on‐glass and bulk protein crystals. The process was investigated by varying solution layer thicknesses as well, from 0.05 down to 0.01, 0.0065 and 0.002 cm. Studying the influence of the forced protein solution flow on HEWL crystal nucleation the classical double‐pulse technique was modified by separating the nucleation and growth stages not only in time, but simultaneously also in place. In this case we found that the ratio of on‐glass formed crystal nuclei to bulk nuclei depended on the flow velocity, but in different manner with Seikagaku HEWL and Sigma HEWL. A plausible explanation of our experimental results is that the bulk crystal nucleation occurs on foreign surfaces as well, e.g. on rests of source biomaterial, which are always present in the protein solutions. Moreover, biomaterial seems to be more active nucleant than glass. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Pure, stable stoichimetric nano crystalline hydroxyapatite material was crystallized by double diffusion technique at physiological conditions, temperature at 37°C and pH at 7.4. The sample was sintered at 400°C, 750°C and 1200°C with equal interval of time. They were characterized by X‐ray diffraction studies, Fourier Transformation Infra‐Red analysis, Thermogravimetric analysis, Scanning Electron Microscopic studies and Atomic Force Microscopic studies. The X‐ray analysis confirmed that the grown crystals are to be the pure form of hydroxyapatite. Infra‐red studies confirmed CO free hydroxyapatite. Thermogravimetric studies showed the thermal stability of the hydroxyapatite crystals even at 1200°C. The presence of pores in the sintered sample was traced by scanning electron microscopy. Atomic force microscopy revealed the presence of nano crystalline HAP of size 0.958 nanometer in the samples grown using this technique. At higher temperature the deagglomeration of bulk phases and agglomeration of nano phases leads to the nano crystalline HAP were observed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We report the synthesis of various morphological micro to nano structured zinc oxide crystals via simple precipitation technique. The growth mechanisms of the zinc oxide nanostructures such as snowflake, rose, platelets, porous pyramid and rectangular shapes were studied in detail under various growth conditions. The precursor powders were prepared using several zinc counter ions such as chloride, nitrate and sulphate along with oxalic acid as a precipitating agent. The precursors were decomposed by heating in air resulting in the formation of different shapes of zinc oxide crystals. Variations in ZnO nanostructural shapes were possibly due to the counter ion effect. Sulphate counter ion led to unusual rose‐shape morphology. Strong ultrasonic treatment on ZnO rose shows that it was formed by irregular arrangement of micro to nano size hexagonal zinc oxide platelets. The X‐ray diffraction studies confirmed the wurzite structure of all zinc oxide samples synthesized using different zinc counter ions. Functional groups of the zinc oxalate precursor and zinc oxide were identified using micro Raman studies. The blue light emission spectra of the various morphologies were recorded using luminescence spectrometer. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Abstract

We have designed an experimental study dedicated to silver nanotoxicity using a suspension of citrate-silver nanoparticles, obtained by photochemical reduction. Fine granularity of generally symmetrical shape nanoparticles were evidenced by tansmission electron microscopy. The localized surface plasmon resonance spectral band revealed the intensification of silver nanoparticle formation under UV exposure. The nanotoxicity of silver nanoparticles was tested on cereal sprouts by measuring the concentrations of chlorophylls and carotenes in the green tissue. The differences between control samples, supplied with distilled water and test samples, loaded with different volumes of silver nanoparticles suspension were analyzed statistically, and compared with literature reports.  相似文献   

13.
Surface‐morphology evolution of ZnO nanocrystals has been observed by the hydrothermal process. The effects of stirring time and ammonia content on the morphology evolution have been discussed, respectively. Extension of stirring time of the precursor results in morphology transformation from star‐like to wire‐like ZnO nanocrystals. ZnO nuclei aggregation and uniform Zn(OH)2 precipitation can readily explain these two morphologies, respectively. By increasing the ammonia content in the solution, the morphology of ZnO crystals is transformed from an irregular shape to hexagon sheets to nanorods, and the side length of ZnO crystals is decreased accordingly. Hollow structures are realized at the subsequent solution aging process. Variation of zinc ammonic complex and minimum surface energy can well explain the morphology evolution of ZnO nanostructures.  相似文献   

14.
Heteroepitaxial three dimensional (3D) and two dimensional (2D) growth modes of nitride layers on sapphire substrates are discussed. It is shown that the 3D or 2D growth mode of AlGaN layers depends predominantly on the growth conditions of the underneath low temperature (LT) nucleation layer. Commonly described in literature 3D growth mode is achieved on LT GaN or AlN nucleation layer grown relatively fast. Successive growth of secondary layer at high temperature begins from separated sites, where individual 3D crystallites are formed. Threading dislocations present in crystallites bend on their facets, which reduces the quantity of dislocations. However, slight crystallographic misorientations between crystallites lead to the creation of new dislocations during coalescence of the crystallites. As a result, edge and mix dislocations appear at similar densities of about 109 cm‐2. Modification of growth conditions of LT AlN nucleation layer, especially reduction of their growth rate, leads to drastic changes in properties of the layer. Successive growth of secondary AlGaN layer at high temperature starts evenly on whole surface retaining atomic flatness. Thus growth at high temperature occurs only by 2D mode. Therefore, it is possible to grow a very thin AlGaN layers directly on top of LT nucleation layer. Such layers contain large number (1010 cm‐2) of edge dislocations, and relatively small number (less then 108 cm‐2) of mix dislocations. It is also shown that the decisive factor determining the growth mode of AlN nucleation layer is a growth of the first few atomic layers on substrate surface. The slow growth of these few first atomic layers decide about the 2D growth mode, and the fast one about the 3D one. The model explaining this difference is presented as well. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
This paper describes the measurement of induction time in precipitation of silver nanoparticles at different temperatures and supersaturations, and models it with Smoluchowski's coagulation theory. Silver nanoparticles are synthesized by reaction of silver nitrate with hydrazine in the presence of sodium citrate as stabilizer. The rate of association between clusters is found to depend on temperature and their sizes. The activation energy for the association between two clusters and interfacial tension of silver nanoparticles were also estimated. The results also show that induction time decreases with increasing supersaturation and temperature. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Single crystals of KDP crystals with embedded Urea molecules and TiO2 nanoparticles have been grown from aqueous solution by the temperature lowering method. The effect of the organic molecules and nanoparticles on the structural and mechanical properties has been studied. It has been observed that addition of Urea molecules improves laser induced damage threshold and mechanical strength of the crystal, while TiO2 nanoparticles have the opposite effect. The structure and composition of KDP:Urea crystal are studied by three‐crystal X‐ray diffraction analysis, which reveals the existence of a correlation between the increase of the microhardness value and the change of the crystal lattice parameter. The surface features of KDP:TiO2 crystals are analyzed by scanning electron microscopy that reveals the presence of quasi‐equidistant growth bands caused by capture of the nanoparticles. It is shown that the rise of TiO2 nanoparticles concentration up to 10−4 wt.% and higher resulted in 3‐fold reduction of the laser damage threshold of KDP:TiO2 relative to pure KDP in [001] and [100] crystallographic directions. It is found that microhardness and fracture toughness decrease at the nanoparticles concentration of 10−3 wt.% due to crack formation at crystal lattice discontinuities. The grown crystals also have been subjected to dielectric studies.  相似文献   

17.
Cadmium telluride (CdTe) and his compounds play a leading role in X‐ray and γ‐ray detector technology. One of the most used methods for growing these crystals is the travelling heater method (THM). The ingots obtained by using this technique show excellent composition uniformity, but the structural quality is affected by the presence of large grains which appear because of large curvatures of the solid‐liquid interface during the solidification process. This numerical work investigate the thermal field and melt convection in CdTe processing by THM in order to elucidate the mechanism of growing these crystals. The influence of the furnace geometry on the interface shape and temperature gradient in liquid is analyzed for samples with small (1 cm) and large (5 cm) diameters. The computations include flow effects on thermal field in the melted zone. The thermal conditions are optimized for THM growth of CdTe crystals at high solidification temperatures. A new multi‐zone furnace configuration for growing crystals of large diameter and flattened interface is proposed in this work.  相似文献   

18.
In the present paper ZnO and TiO2 nano particles are dispersed in Cyano-biphenyl liquid crystalline compounds (n?=?7, 12). The thermal polarizing microscopy and differential scanning calorimetry techniques are employed to measure the transition temperatures. The Nematic transition temperatures are decreased by 2.34?°C and 1.53?°C in Heptylbiphenyl, 1.07?°C and 1.12?°C in dodecylbiphenyl compounds due to the dispersion of nanoparticles. The refractive indices and Newton’s rings methods are exploited to measure birefringence at different temperature in nematic phase. The orientational order parameters are estimated by finding the birefringence in perfect order. The orientational order parameter is increased in nanoparticles dispersed liquid crystals when compare to pure liquid crystalline compounds.  相似文献   

19.
Sexiphenyl thin films were grown by Hot Wall Epitaxy on air‐cleaved mica (001) surfaces at substrate temperatures between 293 K and 440 K. For the entire temperature range, organic thin films show nano‐needle like morphology. The nano‐needles grown at low substrate temperature (293 K) are shortest, and their growth is accompanied by a simultaneous formation of flat islands which disturbs the growth of nano‐needles. On the contrary, unusually long nano‐needles with typical lengths up to the mm range evolve during the growth at a substrate temperature close to the material's thermal desorption temperature at about 440 K. X‐ray diffraction reveals two different crystalline orientations for nano‐needles in the entire temperature range. At low substrate temperatures dominantly the (11 ) plane of the β‐phase is formed parallel to the mica (001) surface. At elevated temperatures another strong texture becomes dominant which is close to the (11 ) crystal orientation. In contrast to this, crystallites with the preferred orientation (001) parallel to the surface of the substrate are formed at low substrate temperature (293 K). This crystal orientation can be associated with flat islands observed in the early growth stage. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
AFM is a powerful tool for imaging nanoscale surface features; it provides two and three dimensional crystal structure images and other information about actual surface of zeolite crystallites. In this paper, nanosized zeolite L is synthesized in different crystallization times and a study of crystal growth of zeolite L is reported using atomic force microscopy (AFM). X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques are used for characterization of the as synthesized samples. TEM and two‐dimensional AFM images indicate that the zeolite particles are in a nano‐range and they have hexagonal structure. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号