首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics Reports》1997,286(6):349-374
We present a comprehensive investigation of non-equilibrium effects and self-heating in single electron transfer devices based primarily on the Coulomb blockade effect. During an electron trapping process, a hot electron maybe deposited in a quantum dot or metal island, with an extra energy usually of the order of the Coulomb charging energy, which is much higher than the temperature in typical experiments. The hot electron may relax through three channels: tunneling back and forth to the feeding lead (or island), emitting phonons, and exciting background electrons. Depending on the magnitudes of the rates in the latter two channels relative to the device operation frequency and to each other, the system may be in one of three different regimes: equilibrium, non-equilibrium, and self-heating (partial equilibrium). In the equilibrium regime, a hot electron fully gives up its energy to phonons within a pump cycle. In the non-equilibrium regime, the relaxation is via tunneling with a distribution of characteristic rates; the approach to equilibrium goes like a power law of time (frequency) instead of an exponential. This channel is plagued completely in the continuum limit of the single-electron levels. In the self-heating regime, the hot electron thermalizes quickly with background electrons, whose temperature Te is elevated above the lattice temperature Tol. We have calculated the coefficient in the well-known T5 law of energy dissipation rate, and compared the results to experimental values for aluminum and copper islands and for a two-dimensional semiconductor quantum dot. Moreover, we have obtained different scaling relations between the electron temperature, the operation frequency and device size for various types of devices.  相似文献   

2.
In this paper we analyze the changes experienced by the energy spectra of a confined exciton in type II semiconductor quantum dots, considering the quantum dot as a possible functional part that, in the future devices, can be applied in spintronics, optoelectronics, and quantum information technologies. We studied the lowest energy states of an exciton (X) confined in type II InP/GaInP self-assembled quantum dot (SAQDs), with axial symmetry in the presence of a uniformly applied magnetic field in the growth direction. In our model, it is considered that the electron is located within the point of InP and the hole is in the GaInP barrier. The solution of the Schrödinger equation for this system is obtained by a variational separation process of variables in the adiabatic approximation limit and within the effective mass approximation. We study the energy levels associated with the electron and the hole, and the energy of the exciton. Due to the axial symmetry of the problem the z component of the total orbital angular momentum, Lz=le+lh, is preserved and the exciton states are classified according to the values of this component. Quantum dots have a finite and variable thickness, with the purpose of analyzing the effects related to the variation of the morphology and the presence of a wet layer.  相似文献   

3.
Starting from the Aviram–Ratner molecular diode design, we follow the progress of molecular electronics from simple discrete molecular devices towards quantum computing at the molecular scale. Discrete molecular devices like the electromechanical C60single-molecule amplifier and the nanotube transistor are described. Then, progresses towards intramolecular electronics where circuits and devices may be integrated in a single molecule are discussed. This requires the mastering of the long-range electron transfer effect (super-tunnelling phenomenon) and introduces new electronic circuit rules to create electronic functionnalities inside a single molecule. At this stage, intramolecular electronics can be viewed as a peculiar branch of quantum computing, using the decoherence effect, instead of avoiding it, to stabilize a computation within a single molecule.  相似文献   

4.
To investigate the inter-molecular energy transfer between polysilane and dye dopants, poly(methylphenylsilane)(PMPS) was used as a host material and perylene as the blue dopant. The structure of the devices is indium–tin oxide (ITO)/PEDOT:PSS(30 nm)/PMPS:perylene(dye dopant 0.1–1.0 mol%)(60 nm)/Alq3(20 nm)/LiF(0.5 nm)/Al(100 nm). Poly(3,4-ethylenedioxythiophene) (PEDOT):poly(4-styrenesulfonate) (PSS) is used as a buffer layer, tris(8-hydroxyquinoline)aluminum (Alq3) as hole transporting layer, LiF as hole injection layer. The device shows a luminance 810 cd/m2 at current density of 28 mA/cm2, luminous efficiency of 0.14 lm/W. The external quantum efficiency (EQE) is about 0.5% and EQE increased up to 0.52% by doping with single wall carbon nanotubes (SWNT) into the emissive layer. We found an efficient inter-molecular energy transfer from polysilane to dye dopants. Furthermore, using the polysilane and energy-matched dye dopants enable to fabricate the electroluminescence devices through wet processes.  相似文献   

5.
This work is a comparative study of the processes of charge trapping in silicon dioxide layers doped with different rare-earth (RE) impurities (Gd, Tb, Er) as well as with Ge. Diode SiO2-Si structures incorporating such oxide layers exhibit efficient electroluminescence (EL) in the spectral range of UV to IR. Ion implantation was performed over a wide dose range with the implant profiles peaking in the middle of the oxide. Charge trapping was studied using an electron injection technique in constant current regime with simultaneous measurements of the EL intensity (ELI). High-frequency C/V characteristics were used to monitor the net charge in the oxides.Analysis of the charge trapping and the variation of the EL intensity during electron injection shows that the current density range can be divided in three portions: (i) low injection level, where electron/hole capture at traps with large capture cross-sections and low ELI occurs; (ii) medium injection level corresponding to the main operation mode of the devices (odd hole trapping depending on the injected current level is observed); and (iii) high injection level (electrical quenching of the EL that correlates with electron capture at traps of extremely small capture cross-sections takes place). The nature of specific hole trapping at the medium injection level in RE-doped devices is discussed. Mechanisms of EL quenching at the high injection level are proposed.  相似文献   

6.
The electron energy relaxation is investigated as a function of the “electron temperature” Te in the n-channel of a (100) surface silicon MOSFET device by inspecting the phenomenological energy relaxation time τε(Te). τε is determined theoretically and compared to experimental results in order to identify the energy relaxation mechanism(s) present at the interface. Two dimensional electron transport is assumed. Single activation temperature (θ) Rayleigh wave scattering and acoustic Rayleigh wave scattering are studied as possible energy loss processes. The effects of electric subbanding near the surface are included. τε is calculated for Te ? 15 K in the electric quantum limit. We find that a single θ = 12.0 K Rayleigh phonon fits theory to experiment for a single electron inversion density (Ninv) case, but can not provide a fit simultaneously for more than one Ninv value. Theory and experiment disagree when Rayleigh wave acoustic scattering is assumed.  相似文献   

7.
Dimensional magnetoplasma resonance is observed and studied in a spatially confined, two-dimensional hole system in (001) GaAs/AlGaAs single quantum wells. From the analysis of the field dependence of the magnetoplasma resonance on the diameter of the 2D system, the semiclassical cyclotron hole mass is determined. Its value is found to be equal to 0.26m 0 (m 0 is the free electron mass), which considerably exceeds the theoretically predicted value. A method is proposed for a direct determination of the concentration and mobility of 2D holes from the analysis of the magnetoplasma resonance.  相似文献   

8.
We have investigated the effects of oxygen and chlorine addition in the ppm range to pure amorphous selenium (a-Se) in terms of electron and hole transport in vacuum-deposited films. We examined the electron range (μeτe) and hole range (μhτh) by carrying out time-of-flight (TOF) and interrupted field time-of-flight (IFTOF) transient photoconductivity measurements. We have found that even small amounts of oxygen in the ppm range can significantly affect both electron and hole lifetimes. Oxygen addition increases the hole lifetime and decreases the electron lifetime. As the oxygen doped a-Se films age, the hole lifetime has a tendency to decrease while the electron lifetime shows a slight improvement. In contrast, chlorine addition almost totally annihilates electron transport while the hole transport remains relatively unaffected.  相似文献   

9.
Strain effects on a built-in electron-hole dipole moment are investigated in asymmetric In x Ga1?x As coupled quantum dots. We compute electron-hole separation as a function of alloy compositions for both electron and hole resonance cases. It is noted that the inclusion of strain enhances the built-in dipole moments and that the inverted electron-hole alignment is found for electron and hole resonances. Furthermore, the reversal of dipole moments gives rise to different asymmetric Stark shifts in each transition spectrum.  相似文献   

10.
Auger processes are investigated for CdS/ZnS core-shell quantum dots. Auger recombination (AR) lifetime and electron relaxation inside the core are computed. Using the effective-mass theory and by solving a three-dimension Schrödinger equation we predict the dependence of Auger relaxation on size of core-shell nanocrystals. We considered in this work different AR processes: the excited electron (EE), excited hole (EH), multiexciton AR type. Likewise, Auger multiexciton recombination rates are predicted for biexciton. Our results show that biexciton AR type is more efficient than the other AR process (excited electron (EE) and excited hole (EH)). We also found that electron Auger relaxation PS is very efficient in core-shell nanostructures.  相似文献   

11.
In the tight binding approximation, the spatial configuration of the ground state and the binding energy of a hole in a “diatomic” artificial molecule formed by vertically coupled Ge/Si(001) quantum dots are studied. The inhomogeneous spatial distribution of elastic strain arising in the medium due to the lattice mismatch between Ge and Si is taken into account. The strain is calculated using the valence-force-field model with a Keating interatomic potential. The formation of the hole states is shown to be determined by the competition of two processes: the appearance of a common hole due to the overlapping of “atomic” wavefunctions and the appearance of asymmetry in the potential energy of a hole in the two quantum dots because of the superposition of the elastic strain fields from the vertically aligned Ge nanoclusters. When the thickness of the Si layer separating the Ge dots (t Si) is greater than 2.3 nm, the binding energy of a hole in the ground state of the two-dot system proves to be lower than the ionization energy of a single quantum dot because of the partial elastic stress relaxation due to the coupling of the quantum dots and due to the decrease in the depth of the potential well for holes. For the values of the parameter t Si, an intermediate region is revealed, where the covalent molecular bond fails and the hole is localized in one of the two quantum dots, namely, in the dot characterized by the highest strain values.  相似文献   

12.
Surface selective epitaxial growth on patterned substrates is used to fabricate quantum dot-tunnel barrier systems, which can be used as single-electron transistor devices. In the centre of a pre-patterned constriction a self-assembled GaAs quantum dot embedded in barrier material is formed during the molecular beam epitaxial growth of an Al0.33Ga0.67As/GaAs heterostructure. The quantum dot is connected via self-aligned tunnelling barriers to source and drain electrodes. In-plane-gate electrodes are also realized within the epitaxial growth process. The paper describes the fabrication process of the device and the characterization of the direct grown quantum dot-tunnel barrier system using scanning-electron microscopy, atomic-force microscopy and transport spectroscopy.  相似文献   

13.
14.
We show that if the valence band offset between CdTe and Cd1-xMnxTe alloys is not too large, magneto-photoluminescence experiments performed on CdTe-Cd1-xMnxTe-Cd1-yMnyTe double quantum wells should yield direct informations on this offset: the structure changes from a type I configuration (where electron and hole are mostly localized within CdTe layer) prevailing at zero magnetic field to a type II configuration (electron in CdTe layer, hole in Cd1-yMnyTe layer) at large magnetic field.  相似文献   

15.
Ar+ ion milling of InSb for manufacturing single electron devices was studied. It is shown that pyramidal structures (porous) are created on the (1 1 1) surface of InSb wafers by anisotropic etching. Also it was shown the axis of the pyramidal structure is a function of the angle of the Ar+ incident beam and does not depend on the energy of the beam. EDX measurement results show InxOy and SbxOy were not created on the surface after milling process. FTIR measurement results show that the surface reflection was decreased and less than 0.3 V flat band voltage was seen in capacitance voltage measurement results. SEM images show that the etching has approximately vertical profile. Therefore the Ar+ milling technique can be used as a dry etching technique for manufacturing mesa and/or porous structures of InSb. Since the surface is porous and of near-pyramidal morphology, one can simulate the surface by a set of needles each of which is a nanometer-size capacitance (i.e. single electron device). We showed, the threshold voltage of this single electron device is 0.3 V approximately, and therefore it can be used for studying single-electron or Coulomb blockade effects.  相似文献   

16.
The mechanism of formation of ?U centers in high-T c superconductors (HTSCs) is considered. It is shown that the transition from the insulator to the metallic state on doping passes through a certain range of dopant concentrations in which it becomes possible for local transitions of singlet electron pairs to occur from oxygen ions to two neighboring cations (a ?U center), while single-electron transitions are still forbidden. Conduction arises in such systems at a concentration of ?U centers exceeding the percolation threshold for the orbitals of singlet hole pairs. A phase diagram constructed on the basis of the proposed model for the HTSC compounds of the Ln-214 class is in complete agreement with experiment. The mechanisms of formation and relaxation of free hole carriers are considered. It is shown that a distinctive feature of the normal state of HTSCs is the dominant contribution of electron-electron scattering to the charge carrier relaxation processes. It is concluded from the analysis presented that HTSCs comprise a special class of solids in which a nonstandard mechanism of superconductivity, different from the BCS mechanism, is realized.  相似文献   

17.
We have measured the low-temperature transport properties of two-dimensional (2D) GaAs electron gases and 2D SiGe hole gases. Our experimental results fall into three categories. (i) Collapse of spin-splitting and an enhanced Landé g-factor at Landau level filling factors both ν=3 and ν=1 in a 2D GaAs electron gas are observed. Our experimental results show direct evidence that the effective disorder is stronger at ν=1 than that at ν=3 over approximately the same perpendicular magnetic field range. (ii) We present evidence for spin-polarisation of a dilute 2D GaAs electron gas. The Lande g-factor of the system is estimated to be 1.66. This enhanced g value is ascribed to electron–electron interactions at ultra low carrier density limit. (iii) In a high-quality SiGe hole gas, there is a temperature-independent point in the magnetoresistivity ρxx and ρxy which is ascribed to experimental evidence for a quantum phase transition between ν=3 and ν=5. We also present a study on the temperature(T)-driven flow lines in our system.  相似文献   

18.
Intersublevel transitions in semiconductor quantum dots are transitions of a charge carrier between quantum dot confined states. In InAs/GaAs self-assembled quantum dots, optically active intersublevel transitions occur in the mid-infrared spectral range. These transitions can provide a new insight on the physics of semiconductor quantum dots and offer new opportunities to develop mid-infrared devices. A key feature characterizing intersublevel transitions is the coupling of the confined carriers to phonons. We show that the effect of the strong coupling regime for the electron–optical phonon interaction and the formation of mixed electron–phonon quasi-particles called polarons drastically affect and control the dynamical properties of quantum dots. The engineering of quantum dot relaxation rates through phonon coupling opens the route to the realization of new devices like mid-infrared polaron lasers. We finally show that the measurement of intersublevel absorption is not limited to quantum dot ensembles and that the intersublevel ultrasmall absorption of a single quantum dot can be measured with a nanometer scale resolution by using phonon emission as a signature of the absorption. To cite this article: P. Boucaud et al., C. R. Physique 9 (2008).  相似文献   

19.
A simple method, based on the proximity effect of electron beam lithography, alleviated by exposing various shapes in the pattern of incident electron exposures with various intensities, was applied to fabricate silicon point-contact devices. The drain current (I d) of the device oscillates against gate voltage. The electrical characteristics of the single-electron transistor were observed to be consistent with the expected behavior of electron transport through gated quantum dots, up to 150 K. The dependence of the electrical characteristics on the dot size reveals that the I d oscillation follows from the Coulomb blockade by poly-Si grains in the poly-Si dot. The method of fabrication of this device is completely compatible with complementary metal-oxide-semiconductor technology, raising the possibility of manufacturing large-scale integrated nanoelectronic systems.  相似文献   

20.
The density functional theory is used to calculate the energy of an electron–hole liquid in Si/Si1–xGex/Si quantum wells. Three one-dimensional nonlinear Schrödinger equations for electrons and light and heavy holes are solved numerically. It is shown that, in shallow quantum wells (small x), both light and heavy holes exist in the electron–hole liquid. Upon an increase in the Ge content, a transition to a state with one type of holes occurs, with the equilibrium density of electron–hole pairs decreasing by more than a factor of 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号