共查询到20条相似文献,搜索用时 15 毫秒
1.
Pradip K. Bhowmik Haesook Han James J. Cebe Ronald A. Burchett 《Journal of polymer science. Part A, Polymer chemistry》2002,40(1):141-155
A series of thermotropic polyesters, derived from 4,4′‐biphenol (BP), 3‐phenyl‐4,4′‐biphenol (MPBP), and 3,3′‐bis(phenyl)‐4,4′‐biphenol (DPBP), 4,4′‐oxybisbenzoic acid (4,4′‐OBBA), and other aromatic dicarboxylic acids as comonomers, were prepared by melt polycondensation and were characterized for their thermotropic liquid‐crystalline (LC) properties with a variety of experimental techniques. The homopolymer of BP with 4,4′‐OBBA and its copolymers with either 50 mol % terephthalic acid or 2,6‐naphthalenedicarboxylic acid had relatively high values of the crystal‐to‐nematic transition (448–460 °C), above which each of them formed a nematic LC phase. In contrast, the homopolymers of MPBP and DPBP had low fusion temperatures and low isotropization temperatures and formed nematic melts above the fusion temperatures. Each of these two polymers also exhibited two glass‐transition temperatures, which were associated with vitrified noncrystalline (amorphous) regions and vitrified LC domains, as obtained directly from melt polycondensation. As expected, they had higher glass‐transition temperatures (176–211 °C) than other LC polyesters and had excellent thermal stability (516–567 °C). The fluorescence properties of the homopolymer of DPBP with 4,4′‐OBBA, which was soluble in common organic solvents such as chloroform and tetrahydrofuran, were also included in this study. For example, it had an absorption spectrum (λmax = 259 and 292 nm), an excitation spectrum (λex = 258 and 292 nm with monitoring at 350 nm), and an emission spectrum (λem = 378 nm with excitation at 330 nm) in chloroform. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 141–155, 2002 相似文献
2.
Zhi‐Hui Zhang Xue Tan Sheng‐Chun Chen 《Acta Crystallographica. Section C, Structural Chemistry》2009,65(9):o457-o459
Reaction of 5,5′‐methylenedisalicylic acid (5,5′‐H4mdsa) with 4,4′‐bipyridine (4,4′‐bipy) and manganese(II) acetate under hydrothermal conditions led to the unexpected 2:3 binary cocrystal 4,4′‐methylenediphenol–4,4′‐bipyridine (2/3), C13H12O2·1.5C10H8N2 or (4,4′‐H2dhdp)(4,4′‐bipy)1.5, which is formed with a concomitant decarboxylation. The asymmetric unit contains one and a half 4,4′‐bipy molecules, one of which straddles a centre of inversion, and one 4,4′‐H2dhdp molecule. O—H...N interactions between the hydroxy and pyridyl groups lead to a discrete ribbon motif with an unusual 2:3 stoichiometric ratio of strong hydrogen‐bonding donors and acceptors. One of the pyridyl N‐atom donors is not involved in hydrogen‐bond formation. Additional weak C—H...O interactions between 4,4′‐bipy and 4,4′‐H2dhdp molecules complete a two‐dimensional bilayer supramolecular structure. 相似文献
3.
Ben‐Yong Lou Xiao‐Dong Huang Xiang‐Chao Lin 《Acta Crystallographica. Section C, Structural Chemistry》2006,62(6):o310-o311
4,4′‐Bipyridine cocrystallizes with 3‐hydroxy‐2‐naphthoic acid in a 1:2 ratio to give a centrosymmetric three‐component supramolecular adduct, namely 3‐hydroxy‐2‐naphthoic acid–4,4′‐bipyridine (2/1), C11H8O3·0.5C10H8N2, in which 4,4′‐bipyridine is located on an inversion center. The pyridine–carboxylic acid heterosynthon generates an infinite one‐dimensional hydrogen‐bonded chain viaπ–π interactions between naphthyl and 4,4′‐bipyridine groups. The one‐dimensional chains are further assembled into a three‐dimensional network by weak C—H⋯π interactions between pyridyl and naphthyl rings, and C—H⋯O interactions between 3‐hydroxy‐2‐naphthoic acid molecules. 相似文献
4.
Xiang‐Rong Hao Zhong‐Min Su Ya‐Hui Zhao Kui‐Zhan Shao Yong Wang 《Acta Crystallographica. Section C, Structural Chemistry》2005,61(11):m469-m471
A novel cadmium(II) coordination polymer, poly[[[bis(4,4′‐bipyridine)cadmium(II)]‐μ3‐4,4′‐dicarboxybiphenyl‐3,3′‐dicarboxylato] 0.35‐hydrate], {[Cd(C16H8O8)(C10H8N2)2]·0.35H2O}n, was obtained by reaction of Cd(CH3COO)2·3H2O, 4,4′‐bipyridine (4,4′‐bpy) and biphenyl‐3,3′,4,4′‐tetracarboxylic acid (H4L) under hydrothermal conditions. Each CdII atom lies at the centre of a distorted octahedron, coordinated by four O atoms from three H2L2− ligands and N atoms from two monodentate 4,4′‐bpy ligands. Each H2L2− ligand coordinates to three CdII atoms through two carboxylate groups, one acting as a bridging bidentate ligand and the other in a chelating bidentate fashion. Two Cd atoms, two H2L2− anions and four 4,4′‐bpy ligands form a ring dimer node, which links into an extended broad zonal one‐dimensional chain along the c axis. 相似文献
5.
Yue Pan Kunhao Li Wenhua Bi Jing Li 《Acta Crystallographica. Section C, Structural Chemistry》2008,64(2):o41-o43
The cocrystallization of adamantane‐1,3‐dicarboxylic acid (adc) and 4,4′‐bipyridine (4,4′‐bpy) yields a unique 1:1 cocrystal, C12H16O4·C10H8N2, in the C2/c space group, with half of each molecule in the asymmetric unit. The mid‐point of the central C—C bond of the 4,4′‐bpy molecule rests on a center of inversion, while the adc molecule straddles a twofold rotation axis that passes through two of the adamantyl C atoms. The constituents of this cocrystal are joined by hydrogen bonds, the stronger of which are O—H...N hydrogen bonds [O...N = 2.6801 (17) Å] and the weaker of which are C—H...O hydrogen bonds [C...O = 3.367 (2) Å]. Alternate adc and 4,4′‐bpy molecules engage in these hydrogen bonds to form zigzag chains. In turn, these chains are linked through π–π interactions along the c axis to generate two‐dimensional layers. These layers are neatly packed into a stable crystalline three‐dimensional form via weak C—H...O hydrogen bonds [C...O = 3.2744 (19) Å] and van der Waals attractions. 相似文献
6.
A facile route for the synthesis of 2‐substituted biquinazolinones incorporating a chiral center into one of their lateral appendage, via condensation of 4H‐3,1‐benzoxazin‐4‐one with 3‐amino‐2S‐substituted‐quinazolin‐4‐ones, is described. The methodology is straightforward and does not require chromatographic purification at any stage. The products are obtained in good yields as mixture of diastereoisomers, which can be enriched with the major diastereoisomer by simple recrystallization. The functional groups in the lateral chain can be easily modified allowing the synthesis of a variety of 3,3′‐biquinazoline‐4,4′‐diones. The synthesis of symmetrically 2,2′ chirally disubstituted biquinazolinones via acylation/dehydration sequence of bisanthraniloyl hydrazine is also described. 相似文献
7.
Burkhard Ziemer Lutz Grubert 《Acta Crystallographica. Section C, Structural Chemistry》2000,56(7):e304-e304
The title molecule, C16H22O2, reveals Ci point symmetry in the crystal structure. The structure was disordered. The pyran ring is not planar; the O atom lies significantly out of the least‐squares plane (ten times the r.m.s. deviation of all six atoms). 相似文献
8.
G. Prchniak J. Zo M. Daszkiewicz A. Pietraszko V. Videnova‐Adrabiska 《Acta Crystallographica. Section C, Structural Chemistry》2007,63(7):o434-o436
The crystal structure of the title compound, C12H12O6P2, displays two different regions alternating along the a axis: a hydrogen‐bonded region encompassing the end‐positioned phosphonic acid groups and a hydrophobic region formed by the aromatic spacers. The asymmetric unit contains only half of the biphenyl‐4,4′‐diphosphonic acid (4,4′‐bpdp) molecule, which is symmetric with an inversion centre imposed at the mid‐point between the two aromatic rings. The periodic organization of the molecules is controlled by two strong O—H...O interactions between the phosphonic acid sites. Weak C—H...π interactions are established in the aromatic regions. 相似文献
9.
Ben‐Yong Lou Yan‐Bin Huang 《Acta Crystallographica. Section C, Structural Chemistry》2007,63(4):o246-o248
4,4′‐Bipyridyl N,N′‐dioxide crystallizes with 3‐hydroxy‐2‐naphthoic acid to give a centrosymmetric three‐component adduct, C10H8N2O2·2C11H8O3, which is engineered into a two‐dimensional layer structure by two kinds of π–π interactions. Weak C—H⋯O interactions further link the two‐dimensional structure into a three‐dimensional structure. 相似文献
10.
Su‐Ping Zhou Xu‐Xian Wu Chao Zu Zi‐Lu Chen Fu‐Pei Liang 《Acta Crystallographica. Section C, Structural Chemistry》2010,66(2):m26-m28
The PbII cation in the title compound, [Pb2(C14H4N2O8)]n, is seven‐coordinated by one N atom and six O atoms from four 4,4′‐bipyridine‐2,2′,6,6′‐tetracarboxylate (BPTCA4−) ligands. The geometric centre of the BPTCA4− anion lies on an inversion centre. Each pyridine‐2,6‐dicarboxylate moiety of the BPTCA4− ligand links four PbII cations via its pyridyl N atom and two carboxylate groups to form two‐dimensional sheets. The centrosymmetric BPTCA4− ligand then acts as a linker between the sheets, which results in a three‐dimensional metal–organic framework. 相似文献
11.
Guiyan Zhao Min Zhang Yongfeng Men Mengxian Ding Wei Jiang 《Journal of Polymer Science.Polymer Physics》2007,45(17):2344-2349
The aim of this work is to investigate the effect of consecutive shear on the crystallization of an amorphous aromatic polyimide (PI) derived from 3,3 ′ ,4,4 ′ ‐oxydiphthalic dianhydride (3,3 ′ ,4,4 ′ ‐ODPA) and 4,4 ′ ‐oxydianiline (ODA). At 260 °C, the increase of shear rate or shear time leads to the increase of crystallinity. Indeed, increasing shear rate can also accelerate the crystallization behavior. Moreover, it was found that a new melting peak appeared at higher temperature for long time or high rate sheared sample. The enhancement of crystallization behavior appears directly linked to the increase of crystal thickness. Particularly, the effect of shear temperature was investigated, and the results revealed that the crystallization of the PI was more sensitive to shear at 260 °C, which was 10° above the glass transition temperature (250 °C) of the PI. Possible mechanism was proposed to illustrate the effect of consecutive shear on the crystallization of the PI polymer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2344–2349, 2007 相似文献
12.
By two different routes, 4,4′′′′‐azobis[2,2′: 6′,2″‐terpyridine] was synthesized. Its ruthenium complexes show interesting metal‐to‐ligand charge transfer (MLCT) absorption maxima in the electronic spectra. They represent the first ruthenium complexes of terpyridine units to give blue solutions. 相似文献
13.
Konstantin V. Domasevitch 《Acta Crystallographica. Section C, Structural Chemistry》2008,64(6):o326-o329
In the title compound, 2C10H14N4·3C6HF5O, one of the pentafluorophenol molecules resides on a mirror plane bisecting the O...F axis. The components aggregate by N—H...N, N—H...O and O—H...N hydrogen bonds involving equal disordering of the H atoms into molecular ensembles based on a 2:1 pyrazole–phenol cyclic pattern [O...N = 2.7768 (16) Å and N...N = 2.859 (2) Å], crosslinked into one‐dimensional columns via hydrogen bonding between the outer pyrazole groups and additional pentafluorophenol molecules. The latter yields a 1:1 pyrazole–phenol catemer with alternating strong O—H...N [2.5975 (16) Å] and weaker N—H...O [2.8719 (17) Å] hydrogen bonds. This is the first reported molecular adduct of a pentafluorinated phenol and a nitrogen base, and suggests the utility of highly acidic phenols and pyrazoles for developing hydrogen‐bonded cocrystals. 相似文献
14.
Francesco Paolo Invidiata Stefania Aiello Giancarlo Furno' Enrico Aiello Daniele Simoni Riccardo Rondanin 《Journal of heterocyclic chemistry》2000,37(2):355-361
Thermal rearrangement of 3‐acylisoxazole arylhydrazones allowed facile preparation of 2H‐1,2,3‐triazoles which were firstly reacted with isoamyl nitrite and then with an opportune arylhydrazine to produce the corresponding α‐hydroxyiminohydrazones 8a‐h . The reaction of compounds 8a‐h with phosphorus pentachloride afforded the desired 4,4′‐bitriazoles 1a‐h . The α‐hydroxyiminoketone derivative 7 or the α‐diketone 14 reacted easily with 1,2‐phenylenediamine to afford 1,2,3‐triazoles 2a‐c bearing the quinoxaline moiety at position 4. Improved yields of the quinoxalines 2a‐c were obtained when 1,2‐phenylenediamine was reacted with the dioxime 15. 相似文献
15.
David G. Billing Cedric W. Holzapfel Kevin Blann D. Bradley G. Williams 《Acta Crystallographica. Section C, Structural Chemistry》2000,56(11):e522-e523
The crystal structure of the title compound, C20H18O4, contains a crystallographic inversion center. The C—C bond linking the two halves of the molecule is slightly elongated at 1.577 (3) Å. 相似文献
16.
Seog Joo Kang Sung Il Hong Chong Rae Park 《Journal of polymer science. Part A, Polymer chemistry》2000,38(4):775-780
To prepare thermally stable and high‐performance polymeric films, new solvent‐soluble aromatic polyamides with a carbamoyl pendant group, namely poly(4,4′‐diamino‐3′‐carbamoylbenzanilide terephthalamide) (p‐PDCBTA) and poly(4,4′‐diamino‐3′‐carbamoylbenzanilide isophthalamide) (m‐PDCBTA), were synthesized. The polymers were cyclized at around 200 to 350 °C to form quinazolone and benzoxazinone units along the polymer backbone. The decomposition onset temperatures of the cyclized m‐ and p‐PDCBTAs were 457 and 524 °C, respectively, lower than that of poly(p‐phenylene terephthalamide) (566 °C). For the p‐PDCBTA film drawn by 40% and heat‐treated, the tensile strength and Young's modulus were 421 MPa and 16.4 GPa, respectively. The film cyclized at 350 °C showed a storage modulus (E′) of 1 × 1011 dyne/cm2 (10 GPa) over the temperature range of room temperature to 400 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 775–780, 2000 相似文献
17.
A novel aromatic diamine monomer, 3,3′‐diisopropyl‐4,4′‐diaminodiphenyl‐3′′,4′′‐difluorophenylmethane (PAFM), was successfully synthesized by coupling of 2‐isopropylaniline and 3,4‐difluorobenzaldehyde. The aromatic diamine was adopted to synthesize a series of fluorinated polyimides by polycondensation with various dianhydrides: pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA) and 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) via the conventional one‐step method. These polyimides presented excellent solubility in common organic solvents, such as N,N‐dimethylformamide (DMF), N,N‐dimethyl acetamide (DMAc), dimethyl sulfoxide (DMSO), N‐methyl‐2‐pyrrolidone (NMP), chloroform (CHCl3), tetrahydrofuran (THF) and so on. The glass transition temperatures (Tg) of fluorinated polyimides were in the range of 260–306°C and the temperature at 10% weight loss in the range of 474–502°C. Their films showed the cut‐off wavelengths of 330–361 nm and higher than 80% transparency in a wavelength range of 385–463 nm. Moreover, polymer films exhibited low dielectric properties in the range of 2.76–2.96 at 1 MHz, as well as prominent mechanical properties with tensile strengths of 66.7–97.4 MPa, a tensile modulus of 1.7–2.1 GPa and elongation at break of 7.2%–12.9%. The polymer films also showed outstanding hydrophobicity with the contact angle in the range of 91.2°–97.9°. 相似文献
18.
Tareq M. A. Al‐Shboul Steffen Ziemann Helmar Grls Sven Krieck Matthias Westerhausen 《无机化学与普通化学杂志》2019,645(3):292-300
The condensation reaction of 2,2′‐diamino‐4,4′‐dimethyl‐6,6'‐dibromo‐1,1′‐biphenyl with 2‐hydroxybenzaldehyde as well as 5‐methoxy‐, 4‐methoxy‐, and 3‐methoxy‐2‐hydroxybenzaldehyde yields 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyl ( 1a ) as well as the 5‐, 4‐, and 3‐methoxy‐substituted derivatives 1b , 1c , and 1d , respectively. Deprotonation of substituted 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls with diethylzinc yields the corresponding substituted zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls ( 2 ) or zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyls ( 3 ). Recrystallization from a mixture of CH2Cl2 and methanol can lead to the formation of methanol adducts. The methanol ligands can either bind as Lewis base to the central zinc atom or as Lewis acid via a weak O–H ··· O hydrogen bridge to a phenoxide moiety. Methanol‐free complexes precipitate as dimers with central Zn2O2 rings. 相似文献
19.
Aleksandar Vinjevac Biserka Koji‐Prodi Marijana Vinkovi Kata Mlinari‐Majerski 《Acta Crystallographica. Section C, Structural Chemistry》2003,59(6):o314-o316
The conformational features of the title compound, C28H44S6, are compared with previously reported analogous macrocycles. The type of substituent affects considerably the conformation of the macrocycle. A 1H NMR titration of the title compound with AgBF4 indicated the formation of the 1:1 complex, which was not crystallized. 相似文献
20.
Four organotin complexes with 2,2′‐bipyridine‐4,4′‐dicarboxylic acid, H2dcbp: (Ph3n)2(dcbp) 1 , [(PhCH2)3n]2(dcbp) ⋅ 2CH3OH 2 , [(Me3Sn)2(dcbp)]n 3 , [(Bu3Sn)2(dcbp)]n 4 have been synthesized. The complexes 1–4 were characterized by elemental, IR, 1H, 13C, 119n NMR, and X‐ray crystallographic analyses. Crystal structures show that complex 1 is a monomer with one ligand coordinated to two triorganotin moieties, and a 1D infinite polymeric chain generates via intermolecular C H⋅⋅⋅N hydrogen bond; complex 2 is also a monomer and forms a 2D network by intermolecular O–H⋅⋅⋅O weak interaction; both of complexes 3 and 4 form 2D network structures where 2,2′‐bipyridine‐4,4′‐dicarboxylate acts as a tetradentate ligand coordinated to trimethyltin and tri‐n‐butyltin ions, respectively. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:19–28, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20506 相似文献