首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the device performance and complementary inverter of the InGaP/InGaAs/GaAs doped-channel field-effect transistors (DCFETs) by two-dimensional semiconductor simulation are demonstrated. Due to the relatively large conduction (valance) band discontinuity at InGaP/InGaAs interface, it provides good confinement effect for transporting carriers in InGaAs channel layer for the n-channel (p-channel) device. The large gate turn-on voltage is achieved due to the employment of the wide energy-gap InGaP material as gate layer. The ftft and fmaxfmax are of 6.5 (2.1) and 25 (5) GHz for the n-channel (p-channel) device. Furthermore, the co-integrated structures, by the combination of n- and p-channel field-effect transistors, could form a complementary inverter and the relatively large noise margins are achieved.  相似文献   

2.
A novel heterojunction symmetric tunnel field-effect transistor (S-TFET) has been proposed and investigated, for the first time, in order to address the inborn technical challenges of the conventional p-i-n TFET (i.e., asymmetric TFET). With a band-to-band tunneling process between the germanium source/drain region and the silicon channel region, the theoretical limit of the subthreshold slope (SS) can be overcome (i.e., SS ∼ 45 mV/decade). The bidirectional current flow in the S-TFET is implemented with a p-n-p structure. And better performance in the S-TFET is achieved with a thin silicon-pad layer below the source/drain regions. The effects of source/drain/channel doping concentration and thickness on the performance of the device are investigated in order to create an S-TFET design guideline. In the future, the S-TFET will be one of the promising device structures for ultra-low-power applications, especially in integrated circuits that operate with a half-volt power supply voltage.  相似文献   

3.
张文豪  李尊朝  关云鹤  张也非 《中国物理 B》2017,26(7):78502-078502
In this work, a double-gate-all-around tunneling field-effect transistor is proposed. The performance of the novel device is studied by numerical simulation. The results show that with a thinner body and an additional core gate, the novel device achieves a steeper subthreshold slope, less susceptibility to the short channel effect, higher on-state current, and larger on/off current ratio than the traditional gate-all-around tunneling field-effect transistor. The excellent performance makes the proposed structure more attractive to further dimension scaling.  相似文献   

4.
《Current Applied Physics》2015,15(3):208-212
In this work, a Si-based arch-shaped gate-all-around (GAA) tunneling field-effect transistor (TFET) has been designed and analyzed. Various studies on III–V compound semiconductor materials for applications in TFET devices have been made and we adopt one of them to perform a physical design for boosting the tunneling probability. The GAA structure has a partially open region for extending the tunneling area and the channel is under the GAA region, which makes it an arch-shaped GAA structure. We have performed the design optimization with variables of epitaxy channel thickness (tepi) and height of source region (Hsource) in the Si-based TFET. The designed arch-shaped GAA TFET based on Si platform demonstrates excellent performances for low-power (LP) applications including on-state current (Ion) of 694 μA/μm, subthreshold swing (S) of 7.8 mV/dec, threshold voltage (Vt) of 0.1 V, current gain cut-off frequency (fT) of 12 GHz, and maximum oscillation frequency (fmax) of 283 GHz.  相似文献   

5.
We have applied the large photovoltage developed across a layer of selectively deposited bacteriorhodopsin to the gate terminal of a monolithically integrated GaAs-based modulation-doped field-effect transistor, which delivers an amplified photoinduced current signal. The integrated biophotoreceiver device exhibits a responsivity of 3.8 A/W. The optoelectronic integrated circuit is achieved by molecular-beam epitaxy of the field-effect transistor's heterostructure, photolithography, and selective-area bacteriorhodopsin electrodeposition.  相似文献   

6.
We propose a novel semiconductor optoelectronic switch that is a fusion of a Ge optical detector and a Si metal-oxide semiconductor field-effect transistor (MOSFET). The device operation is investigated with simulations and experiments. The switch can be fabricated at the nanoscale with extremely low capacitance. This device operates in telecommunication standard wavelengths, hence providing the surrounding Si circuitry with noise immunity from signaling. The Ge gate absorbs light, and the gate photocurrent is amplified at the drain terminal. Experimental current gain of up to 1000x is demonstrated. The device exhibits increased responsivity (approximately 3.5x) and lower off-state current (approximately 4x) compared with traditional detector schemes.  相似文献   

7.
为从工艺角度深入研究航空航天用互补金属氧化物半导体(CMOS)工艺混合信号集成电路总剂量辐射损伤机理, 选取国产CMOS 工艺制作的NMOS晶体管及寄生双极晶体管进行了60Coγ射线源下的总剂量试验研究. 发现: 1) CMOS工艺中固有的寄生效应导致NMOS晶体管截止区漏电流对总剂量敏感, 随总剂量累积而增 大; 2) 寄生双极晶体管总剂量损伤与常规双极晶体管不同, 表现为对总剂量不敏感, 分析认为两者辐射损伤的差异来源于制作工艺的不同; 3)寄生双极晶体管与NMOS晶体 管的总剂量损伤没有耦合效应; 4)基于上述研究成果, 初步分析CMOS工艺混合信号集成电路中数字模块及模拟模块辐射损伤机制, 认为MOS晶体管截止漏电流增大是导致数字模块功耗增大的主因, 而Bandgap电压基准源模块对总剂量不敏感源于寄生双极晶体管抗总剂量辐射的能力. 关键词: 总剂量效应 N沟道金属氧化物场效应晶体管 寄生双极晶体管 Bandgap基准电压源  相似文献   

8.
Carbon material, especially the graphene nanoribbon (GNR), is well-known for its exceptional transmission properties. Graphene has become one of the most promising alternative materials for solving problems of the density scaling determined by Moore’ law. Instead of designing the structure into Schottky contacts, our transistor controls the drain current on the atomic scale by doping B/N atoms. By a regular geometric doping atoms, a good transmission performance has been achieved on a small dimension for the first time. The footprint of our transistor is 2.55 nm, including a 1.7 nm channel length and 0.425 nm contact length, the size of the footprint is 16 times smaller than the most recent work. Furthermore, the transistor also shows acceptable properties in transmission. The drain current has a good linearity with the variation of Vgs, especially in the range of 0.8 V to 1.2 V and the range of 1.8 V to 2.1 V. The on/off current ratio is 0.64 × 102 and the on-stage current density is 9.87 mA/µm.  相似文献   

9.
A bacteriorhodopsin (bR)-silicon n-channel metal-oxide field-effect transistor (NMOSFET) monolithically integrated photoreceiver is demonstrated. The bR film is selectively formed on an external gate electrode of the transistor by electrophoretic deposition. A modified biasing circuit is incorporated, which helps to match the resistance of the bR film to the input impedance of the NMOSFET and to shift the operating point of the transistor to coincide with the maximum gain. The photoreceiver exhibits a responsivity of 4.7 mA/W.  相似文献   

10.
This paper reports that a novel type of suspended ZnO nanowire field-effect transistors (FETs) were successfully fabricated using a photolithography process, and their electrical properties were characterized by I--V measurements. Single-crystalline ZnO nanowires were synthesized by a hydrothermal method, they were used as a suspended ZnO nanowire channel of back-gate field-effect transistors (FET). The fabricated suspended nanowire FETs showed a p-channel depletion mode, exhibited high on--off current ratio of ~105. When VDS=2.5 V, the peak transconductances of the suspended FETs were 0.396 μS, the oxide capacitance was found to be 1.547 fF, the pinch-off voltage VTH was about 0.6 V, the electron mobility was on average 50.17 cm2/Vs. The resistivity of the ZnO nanowire channel was estimated to be 0.96× 102Ω cm at VGS = 0 V. These characteristics revealed that the suspended nanowire FET fabricated by the photolithography process had excellent performance. Better contacts between the ZnO nanowire and metal electrodes could be improved through annealing and metal deposition using a focused ion beam.  相似文献   

11.
We consider a ballistic field-effect transistor with channel current carriers having a negative effective mass section in their dispersion relation. Such a device is suggested as an effective generator of terahertz-range oscillations. A gate potential controls the generator regime (including oscillation frequency, amplitude, turning on and off).  相似文献   

12.
An improved theoretical model on the electrical characteristics of metal-ferroelectric-insulator-semiconductor field-effect transistor (MFIS-FET) has been proposed by considering the history-dependent electric field effect and the mobility model. The capacitance-voltage (C-V) characteristics of MFIS structure is evaluated by combining the switching physics of ferroelectric with the silicon physics, and the drain current-gate voltage (ID-VGS) and drain current-drain voltage (ID-VDS) characteristics of MFIS-FET are modeled by combining the switching physics of ferroelectric with Pao and Sah’s double integral. For two MFIS-FETs with SrBi2Ta2O9 and (Bi,La)4Ti3O12 ferroelectric layers, the C-V, ID-VGS and ID-VDS characteristics are simulated by using the improved model, and the results are more consistent with the previous experiment than those based on Lue model, indicating that the improved model is suitable for simulating the electrical characteristics of MFIS-FET. This work is expected to provide some guidance to the design and performance improvement of MFIS structure devices.  相似文献   

13.
为了提高场效应晶体管太赫兹探测器的响应度并降低噪声等效功率,需要对探测器集成平面天线的结构进行合理设计与优化,本文对集成平面天线结构的场效应晶体管太赫兹探测器的研究进行了深入调研。首先,对场效应晶体管太赫兹探测器的工作原理进行了分析,介绍了集成平面天线如何解决耦合太赫兹波效率低的问题。然后,介绍了一些常用的平面天线结构,包括偶极子天线、贴片天线、缝隙天线、grating-gate和其他类型的结构,比较了各种天线的性能以及引入后对太赫兹探测器响应度的影响。通过对比不同天线结构的探测器响应度和噪声等效功率等参数指标,发现:采用平面天线结构之后,场效应晶体管太赫兹探测器的响应度有了大幅度的提升,各种类型的天线对探测器响应度都有不同程度的提升。本文着重介绍了几种集成于场效应晶体管的平面天线结构,包括各种天线的性能和研究进展,最后分析了场效应晶体管太赫兹探测器存在的问题和发展趋势。  相似文献   

14.
In this paper, we presented a solution-processed photodetector with a configuration of field-effect transistor Au/poly(3-hexylthiophene) (P3HT)/poly(methyl methacrylate) (PMMA)/Al, in which P3HT acts as the active layer and PMMA as dielectric layer, and the drain and source electrodes (Au) were fabricated through a shadow mask. Using the top-gate bottom-contact configuration and employing orthogonal solvent to avoid “solution corrosion”, the devices with three different thicknesses (38, 150 and 223 nm) of the P3HT layer were investigated, and all of them showed typical transistor properties and their drain–source current can be controlled by the gate voltage. The photocurrent of the device Au/P3HT(223 nm)/PMMA(930 nm)/Al shows an obvious increment over a broad range of wavelengths from 350 to 650 nm, giving a maximum photo-to-dark current ratio of 2,404 with a photoresponsivity of 22.71 mA/W under the incident 350 nm light at V DS = ?5 V.  相似文献   

15.
We report the first organic light-emitting field-effect transistor. The device structure comprises interdigitated gold source and drain electrodes on a Si/SiO(2) substrate. A polycrystalline tetracene thin film is vacuum sublimated on the substrate forming the active layer of the device. Both holes and electrons are injected from the gold contacts into this layer leading to electroluminescence from the tetracene. The output characteristics, transfer characteristics, and the optical emission properties of the device are reported. A possible mechanism for electron injection is suggested.  相似文献   

16.
17.
The effect of low-frequency (LF) noise sources located in various regions of the transistor on drain current in the static regime is calculated. A method for experimental evaluation of the spectral intensities of the major noise sources is proposed. Calculations are compared to experiment. The model describes the noise behavior of the MOSFET satisfactorily.Leningrad Polytechnic Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 34, No. 2, pp. 198–204, February, 1991.  相似文献   

18.
彭超  恩云飞  李斌  雷志锋  张战刚  何玉娟  黄云 《物理学报》2018,67(21):216102-216102
基于60Co γ射线源研究了总剂量辐射对绝缘体上硅(silicon on insulator,SOI)金属氧化物半导体场效应晶体管器件的影响.通过对比不同尺寸器件的辐射响应,分析了导致辐照后器件性能退化的不同机制.实验表明:器件的性能退化来源于辐射增强的寄生效应;浅沟槽隔离(shallow trench isolation,STI)寄生晶体管的开启导致了关态漏电流随总剂量呈指数增加,直到达到饱和;STI氧化层的陷阱电荷共享导致了窄沟道器件的阈值电压漂移,而短沟道器件的阈值电压漂移则来自于背栅阈值耦合;在同一工艺下,尺寸较小的器件对总剂量效应更敏感.探讨了背栅和体区加负偏压对总剂量效应的影响,SOI器件背栅或体区的负偏压可以在一定程度上抑制辐射增强的寄生效应,从而改善辐照后器件的电学特性.  相似文献   

19.
We develop a theory of a resonant tunneling through a quantum wire placed in transverse electric field and show that transistor action can be caused via the electric-field-induced changes of the symmetry of electron wavefunctions. We evaluate the current–voltage characteristics, transconductance and speed of the proposed device and show how they can be further improved by means of bandgap engineering.  相似文献   

20.
We study the quantum wave transport in nanoscale field-effect transistors. It has been shown that the tunneling effect between the source and the drain in an ultra-short channel transistor significantly degrades the control of the drain current by the gate. However, the tunneling effect is suppressed by reducing the depth of the source and drain junctions which is designated to suppress the short-channel effects concerning the cut-off characteristics of the field-effect transistor. The reduced junction depth confines the carriers in the direction (y -direction) perpendicular to the transport direction (x -direction). The matching of y -direction wavefunctions at regional boundaries suppresses the tunneling effect and normal FET current–voltage characteristics has been obtained, which explains theoretically the successful fabrication of nanoscale field-effect transistors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号