首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystals of methylammonium tetrachloro zincate (II) monohydrate were grown by slow evaporation of saturated aqueous solutions at room temperature. The grown crystals were colourless, bright and transparent. The crystals were characterized through elemental analysis, powder X‐ray diffraction, thermogravimetric (TG‐DTA) and low temperature differential scanning calorimetric (DSC) techniques. While the powder XRD pattern shows the crystallinity of the compound, the elemental analysis and the TG‐DTA confirm the stoichiometry of the compound. The low temperature DSC indicates first order structural phase transition at ‐8°C during heating cycle. The FTIR and far IR spectra of the compound show characteristic vibrational frequencies due to CH3NH3 and ZnCl42‐ ions and other chemical bonds. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Single crystals of Yb, Nd: KLu(WO4)2 (Yb, Nd: KLW) of dimensions up to 40mm× 40mm×5mm have been grown by top‐seeded solution growth (TSSG) method. X‐ray powder diffraction pattern was measured and compared with that of Nd: KLuW and Yb: KLuW. Absorption and fluorescence spectra were measured at room temperature. The Judd‐Ofelt theory was applied to analyze the spectrum of Nd, Yb: KLuW crystal. The intensity parameters Ωt (t=2, 4 and 6) were calculated as Ω2=20.68×10‐20cm2, Ω4=11.04×10‐20cm2, Ω6=6.74×10‐20cm2 respectively, with a root mean square deviation of 0.58×10‐20 cm2. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Single crystals of zinc magnesium tetra thiocyanate [ZnMg(SCN)4], a bimetallic thiocyanate complex, were grown by slow evaporation solution growth technique at room temperature. The bright, transparent and colourless crystals have well defined faces. The grown crystals were characterized through elemental analysis, powder X‐ray diffraction (XRD), thermogravimetric (TG) and differential thermal analysis (DTA), differential scanning calorimetric analysis (DSC), Fourier Transform Infra red (FTIR) and Optical studies. The elemental analysis confirms the stoichiometry of the synthesized crystals. The compound crystallizes under monoclinic structure with lattice parameters a = 10.055 Å, b = 7.44 Å, c = 6.00 Å and β = 90.113°. The TGA indicates 25 % weight loss at 205°C from which the decomposition pattern is formulated. The DSC study indicates that the crystal undergoes only first order phase transitions. The FTIR spectrum indicates among others the presence of metal‐nitrogen and metal‐sulphur bonds thus confirming the formation of the complex. The second harmonic‐generation (SHG) was confirmed by the emission of green radiation using Nd: YAG laser. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Single crystals of tetraethylammonium tetrachlorocuprate (II), [N(C2H5)4]2CuCl4, were grown by slow evaporation method at room temperature. The crystals were characterized through powder XRD, thermogravimetric (TG‐DTA), low temperature differential scanning calorimetric (DSC) studies and FTIR spectroscopy. While the powder XRD pattern of the compound shows sharp Bragg peaks confirming the crystallinity of the compound, the TG‐DTA studies confirm formation of the compound in the stoichiometric ratio. The thermal anomalies observed in DSC curve at ‐120°C in the heating cycle and around ‐30°C in the cooling cycle indicate a first order phase transition. The phase transition was predicted to be associated with the ordering of CuCl42‐ and successive long range orientation of [N(C2H5)4]+ ions which are disordered at high temperatures. The cationic [N(C2H5)4]+ plays a role in phase transitions at low temperatures. The sharp exothermic peak observed in high temperature DSC indicates a structural phase transition when [N(C2H5)4]CuCl3 is formed on heating the compound. The FTIR spectra of the compound characterize the various chemical bonding and water molecules adsorbed in the compound. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Hexagonal titanium silicon carbide (Ti3SiC2) crystals were prepared by vacuum sintering of Ti, Si, and C powders at 1300 °C. The microstructure and grain deformations of Ti3SiC2 were examined by scanning electron microscopy and transmission electron microscopy. The tribological properties of hexagonal Ti3SiC2 crystals as lubrication additive in HVI500 base oil were investigated by a UMT‐2 ball‐on‐plate friction and wear tester. The Ti3SiC2 additives exhibited good friction reduction. Under determinate conditions, the friction coefficient of base oil containing Ti3SiC2 crystals is lower than that of pure base oil. The base oil with 3.0 wt.% hexagonal Ti3SiC2 crystals presented good anti‐wear capability. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Nonlinear optical Ba3Ti3O6(BO3)2 crystals were patterned on the surface of CuO (1 mol%)‐doped 40BaO‐40TiO2‐20B2O3 glass by irradiations of continuous‐wave Nd:YAG (wavelength: λ=1064 nm) and Yb:YVO4 (λ=1080 nm) lasers. Laser energies absorbed by Cu2+ ions were transferred to the lattice system through a nonradiative relaxation process, consequently heating the glass and inducing local crystallizations. For the lines patterned by Yb:YVO4 laser irradiations with a power of 1 W and a scanning speed of 20 μm/s, a c‐axis orientation of Ba3Ti3O6(BO3)2 crystals along the laser scanning direction is proposed from measurements of X‐ray diffraction analyses, polarized optical photographs, polarized micro‐Raman scattering spectra, and azimuthal dependence of second harmonic generations. The laser‐induced crystallization technique is found to be applied successfully for the spatially selective patterning of nonlinear optical Ba3Ti3O6(BO3)2 crystals in glass. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.

The structures of nanocrystalline fibrous powders of refractory oxides have been investigated by different methods: determination of coherent-scattering regions, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic-force microscopy (AFM). The sizes of nanograins of different crystalline phases of refractory metal oxides have been determined during the formation of these nanograins and the dynamics of their growth during heat treatment in the temperature range 600–1600°C has been studied. The data on the structure of nanocrystalline refractory oxide powders, obtained by different methods, are in good agreement. According to the data on coherent-scattering regions, the sizes of the ZrO2 (Y2O3) and Al2O3 grains formed are in the range 4–6 nm, and the particle sizes determined according to the TEM and AFM data are in the ranges 5–7 and 2–10 nm, respectively. SEM analysis made it possible to investigate the dynamics of nanoparticle growth at temperatures above 1000°C and establish the limiting temperatures of their consolidation in fibers.

  相似文献   

8.
The Yb:YAl3(BO3) 4 crystals with different Yb3+ doping concentration have been grown by the flux method. The lattice parameters and decomposition of the Yb:YAl3(BO3)4 crystal with different Yb3+ doping concentration were measured by X‐ray and DTA method. The transmission and fluorescence spectra of Yb3+:YAl3(BO3)4 crystal have been measured. The growth defects of YbxY1‐xAl3(BO3)4 crystals were also detected by using the chemical etching method. The results show that the ytterbium concentration influences these properties of Yb:YAl3(BO3)4. As the Yb3+ concentration increased, the crystal lattice parameter was decreased. At high doping level, the absorption peak concerned at about 980 nm shift to short wavelength. It is also found that the perfection of Yb:YAl3(BO3) 4 crystal with low Yb3+ doping concentration is better than that with high Yb3+ concentration. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Tetrathioureacopper(I) chloride, hereafter abbreviated as TCC, was synthesised and single crystals were obtained from saturated aqueous solution by slow evaporation (solution growth) method at room temperature. The crystals obtained are bright, colourless and transparent having well defined external faces. The grown crystals were characterized through elemental analysis, single crystal X‐ray diffraction study, thermal analysis, electron spin resonance spectroscopy and Fourier Transform infrared spectroscopy. The elemental analysis confirms the stoichiometry of the compound. The single crystal diffraction studies indicate that TCC crystallises in the tetragonal lattice and the unit cell parameters are a = b = 13.4082 Å, c = 13.8074 Å, V = 2482.29 Å3, α = β = γ = 90°. Space group and the number of molecules per unit cell (Z) are found to be P41212 and 8 respectively. The TG curve of the sample shows a prolonged decomposition from 210 to 628.3 °C, from which the decomposition pattern has been formulated. The endothermic peaks in the DTA curve indicate melting and decomposition of the compound at 165.2 and 633.8 °C respectively. An exothermic peak in high temperature DSC indicates a phase transition in the compound at 274.8 °C. Thermal anomalies observed in the low temperature DSC at –163.3, –152.0, –141.5, –108.3, 1.0 and 12.1 °C in the heating run and –157.1 and –153.9 °C in the cooling run reveal first order phase transitions in the crystal. The peaks observed at –146.2 °C in both the heating and cooling runs suggest occurrence of a second order phase transition in this compound. The IR spectroscopic data were used to assign the characteristic vibrational frequencies of various groups present in the compound. The ESR study confirms that the copper is in the +1 oxidation state in the complex. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Single crystals of ytterbium tartrate trihydrate have been grown by gel method using silica and agar‐agar gels as media of growth. The medium of growth influences the morphology of grown crystals, silica gel yielding single and polycrystalline in the form of spherulites whereas agar‐agar gel leading to growth of single and twinned crystals. Materials grown as single crystals have been characterized by using optical and scanning electron microscopy (SEM), EDAX, XRD, FT‐IR, CHN and thermogravimetric techniques. The stoichiometry of the grown single crystals is suggested to be Yb(C4H4O6) (C4H5O6).3H2O. The FT‐IR spectrum shows the presence of singly as well as doubly ionized tartrate ligands. Results of thermal analysis indicate that the material is thermally stable up to a temperature of 200 °C. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Nanocrystalline and polycrystalline La(Ni,Al)5 alloys were prepared by mechanical alloying (MA) followed by annealing and arc melting method, respectively. The amorphous phase of MA samples forms directly from the starting mixture of the elements, without other phase formation. Heating the MA powders at 800 °C for 1 h resulted in the creation of hexagonal CaCu5‐type nanocrystalline compound with mean crystallite size less than 80 nm. XPS studies showed that the shape of the valence band measured for the arc melted (polycrystalline) LaNi5 is practically the same compared to that reported earlier for the single crystalline sample. The substitution of Ni in LaNi5 by Al leads to significant modifications of the electronic structure of the polycrystalline sample. On the other hand, the XPS valence band of the MA nanocrystalline LaNi4.2Al0.8 alloy is considerably broader compared to that measured for the polycrystalline sample. The strong modifications of the electronic structure of the nanocrystalline LaNi4.2Al0.8 alloy could significantly influence on its hydrogenation properties.  相似文献   

12.
Amorphous barium, strontium, calcium and magnesium polymetaphosphate powders (MP2O6)n, n = 20 were prepared by dehydration of the corresponding polymetaphosphate hydrate precipitates. These powders were annealed by different continuous and isothermal heat treatments over the temperature range 450° to 700 °C, the glass transition temperatures Tg to above (Tg + 120) °C. The morphologies at different degrees of crystallisation were studied by scanning electron microscopy. For the main crystallisation process (ten to sixty-seventy percent crystallisation), the powder particles retained their original pea-pod form; then after seventy percent crystallisation, these crystallised particles sintered laterally to lozenge-shaped twin-hexagonal crystals of lengths 0.5 to 3 μm. Differential thermal analysis confirmed that a markedly exothermic crystallisation process (overall enthalpy changes from about 30 to 45 kJ mol−1) was occurring within the powder particles. Crystallisation rates varied from < 0.005 min−1 at temperatures near Tg to > 0.5 min−1 at higher temperatures; the activation energies for this process varied from 360 to 560 kJ mol−1. The completely annealed crystals were studied by scanning electron microscopy, X-ray diffraction and further differential thermal analysis to 1000 °C. The X-ray diffraction d value patterns, the fusion temperatures and the enthalpies of fusion were all in close agreement with the literature values for the corresponding beta alkaline-earth metal polymetaphosphates prepared by melt crystallisation.  相似文献   

13.
Bis(isothiocyanato)‐bis(4‐methylpyridine)zinc(II)(Zn(SCN)2(C6H7N)2), (abbreviated as ZBNC) single crystals of optical quality have been grown from acetone solution by the slow temperature‐lowering method. Its solubilities at different temperatures in acetone were measured. The X‐ray powder diffraction (XRPD) spectroscopy of ZBNC crystal was performed at room temperature. The second harmonic generation (SHG) efficiency was determined by powder technique of Kurtz and Perry using Nd:YAG laser, which is equivalent to KDP crystal. The thermal decomposition process was characterized by thermal gravity and differential thermal analysis (TG\DTA). The specific heat of the crystal is 1440.67 J/mol·K at 325 K. The IR spectrum was recorded in the 500∼3500 cm–1 region, using KBr pellets on a Nicolet 170sx FT‐IR spectrometer. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Yb: LuPO4 crystals with the size up to 6×2×0.5mm3 were grown by the flux growth process using lead pyrophosphate Pb2P2O7 as the high‐temperature solvent. The crystal structure of Yb: LuPO4 crystals at room temperature was refined by using single crystal X‐ray diffraction data. Crystal structure analysis showed that Yb: LuPO4 crystals possessed the tetragonal xenotime structure. The polarized absorption spectra of Yb: LuPO4 were tested at room temperature. The results showed that the absorption spectral region of Yb: LuPO4 crystal was well matched for pumping with readily available diode lasers.  相似文献   

15.
Different morphologies of single‐crystalline orthorhombic phase bismuth sulfide (Bi2S3) nanostructures, including sub‐microtubes, nanoflowers and nanorods were synthesized by a urea‐assisted hydrothermal method at a low temperature below 120 °C for 12 h. The as‐synthesized powders were characterized by X‐ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM) and UV‐vis spectrophotometry. The experimental results showed that the sulfur sources had a great effect on the morphology and size of the resulting powders. The formation mechanism of the Bi2S3 nanostructures with different morphologies was discussed. All Bi2S3 nanostructures showed an appearance of blue shift relative to the bulk orthorhombic Bi2S3, which might be ascribed to the quantum size effect of the final products. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The investigations on the formation of mixed crystals of ammonium dihydrogen orthophosphate (ADP) and potassium dihydrogen orthophosphate (KDP) i.e. potassium ammonium dihydrogen phosphate, K1‐x(NH4)xH2PO4 have been presented in this paper. Pure and mixed crystals of ADP and KDP have been grown by slow evaporation technique from the supersaturated solution at an ambient temperature 26±1 °C for ammonium concentration x in the range 0.0 ≤ x ≤ 1.0 in the case of mixed crystals. Crystal compositions were determined by flame atomic absorption spectroscopy and chemical analysis. The results of the X‐ray analysis of the grown crystals are also reported. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study the kinetic process of dehydration and the high temperature phase behaviour. DTA showed the distinct thermal events attributed to dehydration of ADP, KDP and K1‐x(NH4)xH2PO4. The results of thermal analysis and chemical analysis are consistent with each other. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Single crystals of methylammonium tetrachlorocuprate (II) dihydrate were obtained by slow evaporation method at room temperature. The crystals were characterized through powder XRD, thermogravimetric (TG‐DTA), low temperature DSC studies and FTIR and far IR spectra. While the powder XRD confirms the crystallinity of the compound, the TG and DTA studies confirm the formation of the compound in the stoichiometric ratio and the presence of two water molecules of crystallization. The low temperature DSC study indicates a thermal anomaly at ‐3°C. The ordering of CH3NH3 group at low temperature causes phase transitions in the compound. The IR spectra characterize the various chemical bonding and water molecules in the compound. Laser Raman spectral studies under progress would help understand the mechanism of phase transitions at low temperatures. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Single crystals of lithium tantalate (LiTaO3) doped with Pr, Nd + Yb and Tm were grown by the Czochralski method. A thermal system with 50 mm diameter iridium crucible and two different afterheaters (active and passive) was checked with respect to temperature distribution in a pulling region. The obtained crystals were up to 20 mm in diameter and up 50 mm in length. Crystals were poled, and the Curie temperature was determined for specimens cut of from different parts of single crystals. The polarized absorption spectra, time resolved emission spectra and emission lifetime of Pr3+ doped LiTaO3 crystals were measured. An intense emission from the 3P0 level was observed. Optical properties of the Yb3+ ions excited by energy transfer from Nd3+ ions have been researched for LiTaO3:Nd, Yb crystals.  相似文献   

19.
《Journal of Crystal Growth》2006,286(2):288-293
Single crystals of rare-earth orthovanadate, RVO4 where R=Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, with the cross-sectional size of about 7×7 mm2 and 20–50 mm length have been successfully grown by the floating-zone method. Fluorescence properties at room temperature and dielectric and elastic properties along the c-axis of some grown crystals have been reported.  相似文献   

20.
The Mo‐doped WSe2 nanolamellars have been successfully prepared via solid‐state thermal (750 °C) reaction between micro‐sized W, Mo with Se powders under inert atmosphere in a closed reactor and characterized by X‐ray diffractometer (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the morphologies of the as‐prepared products changed from microplates to nanolamellars to aggregations composed of nanoparticles with the doping of Mo powders. And the sizes of crystallites evidently reduced while the contents of dopant increased within a certain limit (1 wt.%–7 wt.%). The tribological properties of the as‐prepared products as additives in HVI750 base oil were investigated by UMT‐2 multispecimen tribotester. The friction coefficient of the base oil containing Mo‐doped WSe2 nanolamellars was lower and more stable than that of WSe2 nanolamellars. A combination of rolling friction, sliding friction, and stable tribofilm on the rubbing surface could further explain the good friction and wear properties of Mo‐WSe2 nanoparticles as additives than that of WSe2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号