首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of amorphous calcium carbonate (ACC) into crystals in ethanol/water binary solvents under ambient temperature was investigated, and it was found to depend on the volume ratio of ethanol to water (R). Calcite remained dominant when the amount of water was high (R = 1/3). A slight change in the amount of ethanol (R = 3/1) could lead to a dramatic change in the polymorph from calcite to aragonite. However, when poly (allylamine hydrochloride) (PAH) was added at R = 3/1, almost pure vaterite could be obtained, which has a specific morphological variation (from hollow microspheres to cloud‐like). This study provides an alternative polymorphic route for the CaCO3 mineral by using the evolution of ACC in different solvent environments, which provides some useful clues for understanding the importance of kinetic control of the morphologies and polymorphs of a wide range of inorganic materials. In addition, this simple mild phase‐controlled synthetic method could be scaled up as a green chemistry route for the industrial production of different polymorphs of CaCO3.  相似文献   

2.
Crystalline calcium carbonate with randomly dispersed porous structure was prepared through co‐ crystallization with calcium peroxide and the following template elimination by a post heating treatment and washing with water. The artificial CaCO3 possess abundant macro‐mesopores structures and high surface area. This approach may open a new general route for the preparation of crystals with high porosity and structure specialty. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Control over crystal morphology of calcium carbonate (CaCO3) was investigated by simply changing the stirring speeds in the process of CaCO3 formation. Scanning electron microscopy (SEM) and powder X‐ray diffraction (XRD) measurements explore the morphology evolution of CaCO3 at varying stirring speeds. As the stirring speeds increase, rhombohedral calcite, spherical vaterite, and monoclinic crystal with coexistence of calcite phase and vaterite phase were formed, suggesting a facile control over calcium carbonate crystallization in constructing crystals with desired morphology. Moreover, almost pure vaterite spherical particles of narrow particle size distribution were formed at optimum stirring speed. Finally, also elucidated in this work is the mechanism investigation into the construction of various crystal forms via this simple route. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this paper we discuss the properties of amorphous hydrogenated silicon and germanium films prepared by homogeneous chemical vapor deposition. Emphasis is placed upon the important differences between HOMOCVD and plasma-deposited films. Experiments and calculations are presented which illustrate the most important reactor dynamical parameters.  相似文献   

5.
The influence of static magnetic field of strength 0.75 T on the nucleation of calcium carbonate crystals has been investigated. Particle size analysis shows that magnetic field can cause marked difference in distribution. One of the major impacts of magnetic exposure is the increase in number of the critical nuclei formed. Also, magnetic field promotes the formation of parallelepipedic calcite crystals and the dissolution of the smaller crystals by Ostwald ripening mechanism. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Calcium Carbonate has been precipitated from aqueous solutions containing different concentrations and different molecular weight of Polyethylene Glycol (PEG). The precipitations were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT‐IR) and X‐ray diffraction (XRD). The results demonstrated that PEG has profound influence on the nucleation and crystal growth of CaCO3, under condition of low PEG6000 (refer to PEG MW=6000) concentration, it favored the formation of calcite, while high PEG6000 concentration promoted vaterite formation. Additionally, low molecular weight PEG can stabilize vaterite phase. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Gel–forming fibers (GF fibers) can serve as nucleation sites to prepare calcium carbonate (CaCO3) because they can adsorb large amounts of Ca2+ due to their porous structure. In this paper, mineralization behavior of CaCO3 on GF fibers in ethanol–water mixed solvents without any additives has been investigated. The results showed that some crystals covered the fibers, while others were embedded in fibers. Twin–sphere based vaterite, zonary and rodlike calcite with large aspect ratio could be prepared successfully. The effect of ethanol content inside GF fibers, concentration of Ca2+ and CO32‐, mineralization time, miscibility between alcohol and water, and temperature were studied. Lastly, a possible mineralization mode was suggested. This work could provide a new method to prepare inorganic/polymer hybrid materials. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The effect of Na‐Oleate on the agglomeration of calcium carbonate was investigated. Oleate is determined by Infrared spectroscopy. In order to detect the amount of Oleate adsorbed on the calcium carbonate crystals, the differential thermal analysis method was used. The agglomerate size and zeta potential were investigated as a function of Na‐Oleate concentration and pH value. It was found that the amount of Na‐Oleate adsorbed on the calcium carbonate is not only depending on the concentration but also on the pH value and zeta potential. The results also show that the critical Na‐Oleate concentration, where the maximum Na‐Oleate adsorption was reached, was found approximately 300 ppm under the selected experimental condition. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
This paper reports on the precipitation of CaCO3 polymorphs, having various crystal morphologies under different conditions. In particular, systems that were subject to ultrasonic irradiation were compared to the corresponding reference systems in the absence of such a treatment. The application of ultrasonic irradiation predominantly resulted in a change of particle size distribution and polymorphic composition of the precipitate, in comparison to the reference systems. Thus, it was found that the supersaturation and temperature influenced the size distribution, in both the reference and sonicated systems. A mixture of calcite, vaterite and aragonite was obtained in all reference systems, at 25 °C. At this temperature, the sonication caused the vaterite content to increase, while aragonite was not detected. In reference and sonicated systems at 80 °C, only aragonite precipitated. The results also indicate that the principle parameter responsible for the morphology of vaterite was the initial supersaturation: at higher supersaturation spherical vaterite particles precipitated, while at lower supersaturation hexagonal platelets were obtained. The morphological investigations also indicated different mechanisms of vaterite formation in the systems in which precipitation was initiated at higher supersaturation: spherulitic growth of vaterite was observed in sonicated systems, while the aggregation of primary particles was predominant in the reference systems. At lower supersaturation, the effect of c(Ca2+)/c(CO32−) on the morphology of hexagonal platelets of vaterite was observed as well. By varying the c(Ca2+)/c(CO32−), significant changes of the polymorphic composition were observed only in the sonicated systems, at 25 °C.  相似文献   

10.
In this paper, crystal growth of calcium carbonate (CaCO3) in the presence of biomolecules of lotus root was investigated. Scanning electron microscopy, Fourier transform infrared spectroscopy and X‐ray powder diffractometry were used to characterize the products. The results indicate that calcite spherical particles were constructed from small rhombohedral subunits. Similar CaCO3 crystals were also gained when crystal growth of CaCO3 in aqueous solution containing extracts of lotus root was performed, suggesting that the soluble biomolecules of lotus root play a crucial role in directing the formation of hierarchical calcite spherical particles. The possible formation mechanism of the CaCO3 crystals by using lotus root is also discussed, which can be interpreted by particle‐aggregation based non‐classical crystallization laws. The biomolecules of lotus root might induce and control the nucleation and growth of calcium carbonate crystals. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We report on the epitaxial growth of crystalline silicon films on (100) oriented crystalline silicon substrates by standard plasma enhanced chemical vapor deposition at 175 °C. Such unexpected epitaxial growth is discussed in the context of deposition processes of silicon thin films, based on silicon radicals and nanocrystals. Our results are supported by previous studies on plasma synthesis of silicon nanocrystals and point toward silicon nanocrystals being the most plausible building blocks for such epitaxial growth. The results lay the basis of a new approach for the obtaining of crystalline silicon thin films and open the path for transferring those epitaxial layers from c-Si wafers to low cost foreign substrates.  相似文献   

12.
Abstract

The effect of Mg2+ on the crystallization of precipitated calcium carbonate (PCC) via a bubbling carbonation method and the mechanism of eliminating its influence by glucose were investigated. The polymorph and morphology of crystals were characterized by field emission-scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. These results demonstrated that Mg2+ and Mg/Ca molar ratio played significant roles on the morphology of PCC. When the Mg/Ca molar ratio was below 0.5, only spindle-like calcite formed. The rod-like aragonite started to form when the ratio was 0.6. As the ratio increased, the amount of aragonite increased and the length of rod-like aragonite became longer. Notably, the effect of Mg2+ could be eliminated efficiently when the 1.5?wt% glucose was added into the carbonation system, in which system, the PCC crystals were all spindle-like calcite. Furthermore, the mechanism of the glucose to eliminate the influence of Mg2+ on PCC crystallization was proposed.  相似文献   

13.
Calcium carbonate crystallization process, especially the prenucleation stage, has increasingly been the subject of several works. In the present work, a simple method based on electrical conductivity modeling applied to the FCP (Fast Controlled Precipitation) method data is used to highlight the role of CaCO3o ion pairs on calcium carbonate prenucleation stage. A good agreement was obtained between the resistivity vs pH curves estimated by the McCleskey model equation and obtained experimentally in a FCP test. Results showed that the nucleation process begins with the formation of CaCO3o ion pairs as pre‐nuclei as soon as the calcite‐equilibrium pH is reached. Additionally CaCO3o content increases with pH to form aggregates, which depend on the saturation state of the solution. Basing on our thermodynamic data, these aggregates do not form amorphous calcium carbonate ACC as an intermediate phase. They lead to the formation of stable calcium carbonate nuclei which will further evolve to crystallize. Furthermore we demonstrate that in addition to their inhibitory effect on the Ca2+ and CO32− association to form ion pairs, the two scale inhibitors sodium triphosphate (STP) and sodium polyacrylate (RPI) reduce ion pairs aggregation rate.  相似文献   

14.
J. Ivkov  N. Radi?  T. Car 《Journal of Non》2003,319(3):232-240
The pronounced variation of the electrical resistivity of the amorphous Al-W thin films observed during initial heating above room temperature was examined. Both isochronal and isothermal treatments were performed in order to investigate the effects of the film composition, substrate material, and substrate temperature, on the magnitude of the relaxation phenomena. Regarding the isochronal heating, it was observed that the relaxation effects decreased with an increase of the heating rate, and decreased with the aluminum content in the film. The Al78W22 amorphous thin films were subjected to isothermal annealing for 6 h at a temperature of 515 °C. The effects of the substrate material (alumina ceramic, glass and sapphire), and the deposition temperature (LNT, RT, 200 and 400 °C) were examined. The relaxation decreased in a sequence of: alumina ceramic-glass-sapphire substrates, as well as with an increase of the substrate temperature. An assumed dominant role of the aluminum in the effects observed, was tested by the corresponding investigation of Al-Ti and Cu-Ti amorphous thin films.  相似文献   

15.
The photocrystallization of amorphous selenium under the influence of light or electrons used to produce hole-electron pairs has been studied. Illumination increases the growth rate of crystallites and modifies their morphology. Conversely, electron irradiation alters the structure of the amorphous material and induces a decrease of the nucleation rate. An explanation is proposed, which takes into account recent publications on the ‘band structure’ and the nature of bonds in amorphous selenium.  相似文献   

16.
在含有卵磷脂的水溶液中仿生合成了无定形碳酸钙.所得样品用扫描电镜(SEM)、傅立叶红外光谱(FT-IR)、X射线衍射(XRD)和热重分析(TG)等分析方法进行了表征.研究表明:具有一定浓度的卵磷脂可以利用其端基磷酸根基团稳定无定形碳酸钙,这为理解在生物体内的环境中生物矿物的形成机理提供了一种新的途径.  相似文献   

17.
Monovalent ionic additives, Na+, K+ and NHequation/tex2gif-stack-1.gif impact on the morphology and agglomeration of CaCO3 crystals. As increasing the additive concentration, the regular shaped crystals such as rhombohedron and spindle are changed to irregular one due to the inclusion of Na+ and K+ into the crystal structure. The inclusion of Na+ and K+ is detected using ICP‐AES. The partition of coefficients of Na+ and K+ are estimated as 9.74 × 10–4, 9.73×10–4, respectively and the amount of inclusion in the crystals is about 2×103 ppm. However, the inclusion of ions does not modify a crystal structure of calcite. Since NH4+ is large in radius, it is not included in crystal but shifts the spindle shape of crystal to the rhombohedral one. It is interesting to find that such modification of crystal morphology begins to appear at high additive concentration (0.05 M). In addition, the crystal agglomeration is promoted because the electric repulsive charge is reduced as increasing the additive concentration. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
It is proposed that during the atom-by-atom deposition of a film, the attractive forces between the oncoming atoms and those deposited become important in determining the growth of the film when surface diffusion and many atom rearrangement processes are suppressed (precisely the conditions that lead to the formation of amorphous films). The trajectories of the oncoming atoms are distorted in such a way that the formation and growth of surface irregularities are favored. Since the deflection depends inversely upon the incident kinetic energy of the atoms, sputtered films should be smoother than evaporated films for equal substrate temperatures. It is also argued that this mechanism can lead to the formation of voids.  相似文献   

19.
Thin films of Sb2Te2Se were prepared by conventional thermal evaporation of the presynthesized material on Corning glass substrates. The chemical composition of the samples was determined by means of energy‐dispersive X‐ray spectrometry. X‐ray diffraction studies on the as‐deposited and annealed films revealed an amorphous‐to‐crystalline phase transition. The as‐deposited and annealed films at T a = 323 and 373 K are amorphous, while those annealed at T a= 423 and 473 K are crystalline with a single‐phase of a rhombohedral crystalline structure as that of the source material. The unit‐cell lattice parameters were determined and compared with the reported data. The optical constants (n , k ) of the investigated films were determined from the transmittance and reflectance data at normal incidence in the spectral range 400–2500 nm. The analysis of the absorption spectra revealed non‐direct energy gaps, characterizing the amorphous films, while the crystalline films exhibited direct energy gaps. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Amorphous magnetic thin films have been deposited onto BK-7 substrates using the pulsed laser deposition technique. The source material irradiated by the laser was a pack of amorphous ribbons of composition Fe78Si9B13. The structural properties of thin films were investigated and a large number of droplets were observed in the magnetic layers. Electric current passing through the films causes significant deformation of droplets and consequently changes the magnetic thin films characteristics. Magnetic properties evolution after electrical processing was investigated using magneto-optical Kerr effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号