首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphology transition of polystyrene‐block‐poly(butadiene)‐block‐poly(2‐vinylpyridine) (SBV) triblock thin film induced in benzene vapor showing weak selectivity for PS is investigated. The order‐order transitions (OOT) in the sequence of core‐shell cylinders (C), sphere in ‘diblock gyroid’ (sdG), sphere in lamella (sL) and sphere (S) are observed. The projection along (111) direction in Gyroid phase (sdG(111)) is found to epitaxially grow from C(001) in the film. Instead of sdG(111), sdG(110)0.1875 develops to the phase of sL. Consequently, the film experiences the transition sequence of sdG(111) → sdG(211) → sdG(110)0.25 → sdG(110)0.1875 between C and sL. The mechanism is analyzed from the total surface area of the blocks.

  相似文献   


2.
Summary: The behavior of symmetric AnB2nAn triblock copolymer films confined between two hard neutral walls was explored by Monte Carlo simulation. The thicknesses of the films were between ≈1Rg0 and ≈7Rg0, where Rg0 is the unperturbed radius of gyration in the bulk. The confinement leads to a lamellar structure normal to the wall and the order‐disorder transition (ODT) temperature was found to be a function of film thickness. When the film thickness (D) was less than a critical value, DC, which is between 3Rg0 and 4Rg0, the ODT temperature (T*ODT) reduced by chain length N (T*ODT/N) decreased with decreasing film thickness. However, T*ODT/N was nearly independent of the film thickness when it was greater than DC. In the case of strong confinement (D < DC), the B block shrinks along the direction perpendicular to the wall and stretches along the direction parallel to the wall with decreasing film thickness, and the volume occupied by the B block shrinks. Under weak confinement conditions (D > DC), the volume of the B block is nearly independent of film thickness. The conformations of the B block in the disordered state are quite different from those in the lamellae. If the film is thick enough, the volume of the B block approaches its value in the unperturbed state, regardless of the morphology. When temperature decreases, the B block stretches in the direction perpendicular to the A/B interface and shrinks in the other two directions. In addition, decreasing the temperature leads to the chains adopting two main extreme conformations, coiling or stretching as much as they can. The scaling behavior of the fraction of bridge chains vs. the temperature obtained in the weak segregation limit was different from that predicted in the strong segregation limit.

Schematic diagram of the X, Y and Z axis definition.  相似文献   


3.
Summary: The morphologies and conformations of triblock copolymer (ABA and ABC) thin films confined between two identical walls were investigated by Monte Carlo simulation using bond length fluctuation and cavity diffusion algorithm on cubic lattice. Effects of the wall‐block interactions, copolymer chain composition and film thickness on morphologies, as well as on the fraction of chain “bridge” conformation fbridge are presented in detail. In ABA thin film, column, parallel, perforated and perpendicular lamellas were discriminated, furthermore, the transition of morphology and the variation of fbridge of ABA film along with the increase of thickness were revealed. In ABC thin film, lamella especially perpendicular lamella morphologies are predominant in varying the wall‐block interactions and the thickness. The results are consistent with some theoretical predictions such as DDFT and simulations reported in literature.

Isodensity profile of A5B5A5 thin film.  相似文献   


4.
The morphology transition of binary mixtures of polystyrene‐block‐poly(butadiene)‐block‐poly(2‐vinylpyridine)(SBV) triblock and polystyrene (PS) homopolymer thin films was investigated as a function of the volume fraction of added homopolymer and the annealing time in benzene vapor. It was found that the weight ratio of PS in the blends influenced the transition process. When PS content was >5%, the order‐order transition (OOT) of core‐shell cylinders (C) →sphere in “diblock Gyroid” (sdG) → sphere in lamella (sL) → sphere (S) was observed, which was similar to ABC triblock copolymer except for the increased surface area of the PS phase. When PS content reached to 10–30%, the OOT in the sequence of C → sL → S was observed. The disappearance of the Gyroid phase is due to the change of the effective volume fraction. Further increasing the PS content, C phase also disappeared and sL → S was expected to take place. © 2014 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2014 , 52, 1030–1036  相似文献   

5.
Poly(vinyl phenol)‐block‐polystyrene (PVPh‐b‐PS) diblock copolymers are synthesized by sequential anionic polymerization with sec‐butyl lithium as the initiator. The PVPh‐b‐PS diblock copolymer is cast (on a substrate) from several solvent mixtures that contain tetrahydrofuran/toluene ratios of 1:0.1, 1:1, and 1:2. After solvent evaporation the resulting films are characterized by SEM, TEM, and contact angle measurements. A honeycomb structure is fabricated from the vesicle structure at relatively low toluene contents. On the contrary, at relatively higher toluene contents, a micelle structure with porous microspheres is formed, which possesses higher surface roughness and results in film surface superhydrophobicity. The simple method described here that uses common/selective mixed solvents may be easily extended to prepare honeycomb structures and superhydrophobic surfaces simultaneously from a wide variety of block copolymers by carefully controlling the weight composition of the block copolymer and the selective solvent content.

  相似文献   


6.
7.
ABSTRACT

Self-assembly of binary block copolymer blends in thin film induced by solvent vapor annealing has been systematically studied. The diblock copolymers polystyrene-b-poly(2-vinylpyridine) with different molecular weights and volume fractions were blended with different molar ratios to cast thin films on silica substrate by spin coating. The films were annealed separately in the vapor of ethanol or toluene over time to induce morphology transformations from spheres, gyroids, and bicontinuous nanostructures, depending on the blending ratio, solvent selectivity, and annealing time, as investigated by atomic force microscopy and X-ray photoelectron spectroscopy. The formation and transformation mechanism of the self-assembly structure are discussed in the context of solvent-copolymer interactions. This study provides new insights into the simple manipulation of self-assembled nanostructures of block copolymer thin films.  相似文献   

8.
The microphase separation and morphology of symmetric diblock copolymer thin films confined in a slit with neutral or attractive surfaces were studied by the cell dynamic system method (CDS) and Monte Carlo simulation. The size effect, especially in CDS, was carefully investigated indicating that excessively small sizes in the X‐ and Y‐directions will give incorrect results although periodic boundary conditions are imposed. When the walls are neutral, parallel ordered lamella structure only exists over a short range, while irregular microdomain morphology occurs over the whole region. When directional quenching is applied, or the walls are attractive to one of the blocks, a periodical lamellar structure of alternating A‐rich and B‐rich layers occurs over the whole region of the film. Changing the slit width and the strength of interaction will influence the period and arrangement of lamellae. Agreement between the results from CDS and those from simulation is satisfactory indicating the reliability of the CDS method. Comparisons with corresponding experimental results are also discussed.  相似文献   

9.
采用Monte Carlo模拟方法研究了溶剂尺寸对ABA两亲性三嵌段共聚物在选择性溶剂中自组装行为的影响。模拟结果表明,溶剂尺寸是决定共聚物聚集形态的重要因素之一。随着溶剂尺寸的增大,嵌段共聚物自组装所形成的胶束可以发生从球状到棒状再到囊泡状的转变。通过对各组分的相互作用对数随溶剂尺寸变化曲线的分析发现,增大溶剂尺寸会使溶剂的溶解性变差,由此引发体系中的一系列形态转变。此外,通过对体系自组装形貌结构相图的分析发现,增大溶剂尺寸或增加疏水作用同减小亲水作用对于自组装形态的改变具有同等效果。  相似文献   

10.
A polystyrene–polyisoprene (PS–PI) diblock copolymer (10,000–50,000 g/mol) and a matched PS&ndashPI–PS triblock (10,000–100,000–10,000 g/mol) were employed to study the effect of chain architecture on the rheological response of ordered block copolymer melts. Both samples adopt hexagonal microstructures with PS cylinders embedded in a PI matrix; on further heating, an order–order transition (OOT) into a cubic array of spheres takes place prior to the order–disorder transition. Each morphology was verified by SAXS and TEM. Interestingly, at the OOT the low-frequency elastic modulus of the diblock increased abruptly, whereas that of the triblock decreased. In contrast, the modulus of the cubic phase was roughly independent of chain architecture. Chain relaxation parallel and perpendicular to the cylinders was probed by measuring the elastic modulus of a macroscopically aligned sample in directions parallel G and perpendicular (G) to the cylinder orientation. For both materials G < G < G where G is the elastic modulus of a randomly oriented sample. This result is attributed to the ability of the unentangled PS blocks to move along the direction of the cylinder axis, and thus relax the stress in the PI matrix in the parallel alignment. In each of the three cylindrical orientations the triblock had a larger modulus than the diblock, which is attributed to the presence of bridging PI blocks that connect distinct PS domains. About 20° below the OOT G showed a distinct change in its temperature dependence, which, coupled with SAXS measurements, is indicative of the onset of an undulation in the cylinder diameter that presages the pinching off of cylinders into spheres, as recently predicted by theory. The use of oriented samples also permitted SAXS confirmation of an approximate epitaxial relationship between the cylinder and the sphere unit cells, although a distinct change in the location of the structure factor maximum, q*, is noted at the OOT. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2811–2823, 1997  相似文献   

11.
Chiral polyethyne derivatives with lyotropic liquid‐crystalline properties are found to be able to self‐assemble, forming two chiral organizations with opposite handedness in solid thin films by selection of the casting solvent and its concentration. After the film preparation, chiral organization could also be induced by simple exposure to an appropriate organic solvent's vapor for several minutes without thermal treatment. Furthermore, irreversible inversion of the handedness of the chiral organization in the film could be achieved by exposure to solvent vapor.

  相似文献   


12.
The structural evolution in poly(styrene‐b‐butadiene) (P(S‐b‐B)) diblock copolymer thin films during solvent vapor treatment is investigated in situ using time‐resolved grazing‐incidence small‐angle X‐ray scattering (GISAXS). Using incident angles above and below the polymer critical angle, structural changes near the film surface and in the entire film are distinguished. The swelling of the film is one‐dimensional along the normal of the substrate. During swelling, the initially perpendicular lamellae tilt within the film to be able to shrink. In contrast, at the film surface, the lamellae stay perpendicular, and eventually vanish at the expense of a thin PB wetting layer. During the subsequent drying, the perpendicular lamellae reappear at the surface, and finally, PS blocks protrude. By modeling, the time‐dependent height of the protrusions can be quantitatively extracted.

  相似文献   


13.
The reversible micellization and sol–gel transition of block copolymer solutions in an ionic liquid (IL) triggered by a photostimulus is described. The ABA triblock copolymer employed, denoted P(AzoMA‐r‐NIPAm)‐b‐PEO‐b‐P(AzoMA‐r‐NIPAm)), has a B block composed of an IL‐soluble poly(ethylene oxide) (PEO). The A block consists of a random copolymer including thermosensitive N‐isopropylacrylamide (NIPAm) units and a methacrylate with an azobenzene chromophore in the side chain (AzoMA). A phototriggered reversible unimer‐to‐micelle transition of a dilute ABA triblock copolymer (1 wt %) was observed in an IL, 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([C4mim]PF6), at an intermediate “bistable” temperature (50 °C). The system underwent a reversible sol–gel transition cycle at the bistable temperature (53 °C), with reversible association/fragmentation of the polymer network resulting from the phototriggered self‐assembly of the ABA triblock copolymer (20 wt %) in [C4mim]PF6.  相似文献   

14.
Thin films of undoped and Sb-doped SnO2 have been prepared by a sol-gel dip-coating technique. For the high doping level (2–3 mol% Sb) n-type degenerate conduction is expected, however, measurements of resistance as a function of temperature show that doped samples exhibit strong electron trapping, with capture levels at 39 and 81 meV. Heating in a vacuum and irradiation with UV monochromatic light (305 nm) improves the electrical characteristics, decreasing the carrier capture at low temperature. This suggests an oxygen related level, which can be eliminated by a photodesorption process. Absorption spectral dependence indicates an indirect bandgap transition with Eg 3.5 eV. Current-voltage characteristics indicate a thermionic emission mechanism through interfacial states.  相似文献   

15.
The structure of iron oxide was controlled by regulating the hydrolytic polymerization of aquo iron complexes with organic polydentate ligands such as diols. Iron oxides were prepared by calcining the precursor polymers obtained from iron nitrate nonahydrate and diols. When the diols were 1,2-pentanediol, 1,2-hexanediol and 1,2-octanediol, α-Fe2O3 with corundum structure appeared exclusively or as the main crystalline phase, in spite of the amount of diol used and the calcination temperature. In the case of 1,2-decanediol and 1,2-dodecanediol, when five moles of the diols were used to one mole of iron nitrate and the calcination temperatures were below 400°C, ψ-Fe2O3 with spinel structure appeared as the main phase and, when less than five moles of the diols were used, α-Fe2O3 appeared exclusively or as the main phase, irrespective of the calcination temperature. This tendency was also observed in thin films. Thus, a transparent magnetic film composed of γ-Fe2O3 could be prepared by applying a benzene solution of the iron polymer, obtained with 5 equivalents of 1,2-decanediol, on quartz and calcining the gel film at 350°C.  相似文献   

16.
The nanostructures of thin films spin‐coated from binary blends of compositionally symmetric polystyrene‐b‐polybutadiene (PS‐b‐PB) diblock copolymer having different molar masses are investigated by means of atomic force microscopy (AFM) and grazing‐incidence small‐angle X‐ray scattering (GISAXS) after spin‐coating and after subsequent solvent vapor annealing (SVA). In thin films of the pure diblock copolymers having high or low molar mass, the lamellae are perpendicular or parallel to the substrate, respectively. The as‐prepared binary blend thin films feature mainly perpendicular lamellae in a one‐phase state, indicating that the higher molar mass diblock copolymer dominates the lamellar orientation. The lamellar thickness decreases linearly with increasing volume fraction of the low molar mass diblock copolymer. After SVA, well‐defined macrophase‐separated nanostructures appear, which feature parallel lamellae near the film surface and perpendicular ones in the bulk.

  相似文献   


17.
Involving supramolecular chemistry in self‐assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double‐comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4‐vinylpyridine)‐block‐poly(N‐acryloylpiperidine) diblock copolymers and donating 3‐nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae‐in‐lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature‐resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock‐like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self‐assembly of both low‐ and high‐molecular‐weight block copolymer systems.  相似文献   

18.
The molecularly selective regulation of molecular fluxes in a biomaterial that delivers multiple chemical species simultaneously is still beyond the reach of materials scientists. A delivery material was developed by means of the layer‐by‐layer (LbL) technique. This material discriminatively regulates the delivery flux of bioactive small molecules, as represented by a peptide containing the RGD fragment and the chemotherapy drug doxorubicin (DOX). Molecularly selective flux regulations in LbL films are realized through fast, reversible supramolecular interactions between cyclodextrin and its guests. The mechanism underlining the delivery strategy is that supramolecular interactions promote molecular loading and slow down diffusion‐dependent release. In a preliminary survey of materials parameters, a maximum difference in cell viability between healthy human bronchial epithelial cells and cancer cells (A549) was realized.  相似文献   

19.
Thin‐film growth of aragonite CaCO3 on annealed poly(vinyl alcohol) (PVA) matrices is induced by adding Mg2+ into a supersaturated solution of CaCO3. Both the growth rate and surface morphology of the aragonite thin films depend upon the concentration of Mg2+ in the mineralization solution. In the absence of PVA matrices, no thin films are formed, despite the presence of Mg2+. Molecular dynamics simulation of the CaCO3 precursor suggests that the transition of amorphous calcium carbonate to crystals is suppressed in the presence of Mg2+. The role for ionic additives in the crystallization of CaCO3 on organic templates obtained in this study may provide useful information for the development of functional hybrid materials.  相似文献   

20.
The self‐assembly of nanostructured globular protein arrays in thin films is demonstrated using protein–polymer block copolymers based on a model protein mCherry and the polymer poly(oligoethylene glycol acrylate) (POEGA). Conjugates are flow coated into thin films on a poly(ethylene oxide) grafted Si surface, forming self‐assembled cylindrical nanostructures with POEGA domains selectively segregating to the air–film interface. Long‐range order and preferential arrangement of parallel cylinders templated by selective surfaces are demonstrated by controlling relative humidity. Long‐range order increases with coating speed when the film thicknesses are kept constant, due to reduced nucleation per unit area of drying film. Fluorescence emission spectra of mCherry in films prepared at <25% relative humidity shows a small shift suggesting that proteins are more perturbed at low humidity than high humidity or the solution state.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号