首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 135 毫秒
1.
陈启明  晏长岭  曲轶 《发光学报》2019,40(2):171-176
由于1. 55μm波段广泛应用于通信领域,为了探索不同生长温度对InN量子点的形貌影响,并且实现自组装InN量子点在1. 55μm通信波段的发光,对InN量子点的液滴外延及物性进行了相关研究。首先利用射频等离子体辅助分子束外延(PA-MBE)技术在GaN模板上,采用液滴外延方法在3种温度下生长了InN量子点结构。生长过程中靠反射高能电子衍射(RHEED)对样品进行原位监控。原子力显微镜(AFM)表征结果表明随着生长温度升高,量子点尺寸变大,密度减小。在生长温度350℃和400℃下,观测到了量子点;当温度高于450℃时,未观测到InN量子点。当生长温度为400℃时,量子点形貌最好,密度为6×10~8/cm~2,对400℃下生长的InN量子点进行了变温PL测试,成功得到InN量子点在1. 55μm波段附近的光致发光,并且随着测试温度的升高,量子点的发光峰位发生了先红移后蓝移最后又红移的S型曲线变化,这种量子点有望在未来应用于量子通信领域。  相似文献   

2.
We have investigated the optical properties of InAs/GaAs (1 1 3)A quantum dots grown by molecular beam epitaxy (MBE) with different growth rates by photoluminescence spectroscopy (PL) as a function of the excitation density and the sample temperature (10–300 K). Reflection high-energy electron diffraction (RHEED) is used to investigate the formation process of InAs quantum dots (QDs). A redshift of the InAs QDs PL band emission was observed when the growth rate was increased. This result was explained by the increase of the InAs quantum dot size with increasing growth rate. A significant redshift was observed when the arsenic flux was decreased. The evolution of the PL peak energy with increasing temperature has showed an S-shaped form due to the localization effects and is attributed to the efficient relaxation process of carriers in different InAs quantum dots and to the exciton transfer localized at the wetting layer.  相似文献   

3.
The effects of the top barrier and the dot density on photoluminescence (PL) of the InAs quantum dots (QDs) sandwiched by the graded InxGa1−xAs barriers grown by metal-organic vapor phase epitaxy (MOVPE) have been studied. Two emission peaks corresponding to the ground state and the 1st excited state transitions of the QD structures have been observed, which matches well to the theoretical calculation. The PL emission linewidth and intensity of the InAs QDs structure are improved by reducing the Indium/Gallium composition variation of the graded InxGa1−xAs top barrier layer of the structure. The QDs’ ground states filling excitation power depends on the crystal quality of the InGaAs barrier layer and the QD density. The extracted thermal activation energy for the QDs’ PL emission is sensitive to the QD size.  相似文献   

4.
报道了以飞秒脉冲激光为激发光源的水溶性CdTe量子点(QDs)的稳态荧光光谱和纳秒时间分辨荧光光谱.实验发现CdTe量子点的荧光光谱峰值位置随激发波长变化发生明显移动,激发脉冲波长越长,荧光峰位红移越大.荧光动力学实验数据显示,在400nm和800nm脉冲激光激发下,水溶性CdTe量子点的荧光光谱中均含有激子态和诱捕态两个衰减成分,两者的发射峰相距很近,诱捕态的发射峰波长较长.在800nm脉冲激光激发下的诱捕态成分占总荧光强度的比重比400nm激发下的约高3倍,其相对强度的这种变化导致了稳态荧光发射峰位的红移. 关键词: CdTe 量子点 时间分辨 荧光光谱 上转换荧光  相似文献   

5.
Self-assembled InAs quantum dots (QDs) on In0.52Al0.48As layer lattice matched to (1 0 0) InP substrates have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). TEM observations indicate that defect-free InAs QDs can be grown to obtain emissions over the technologically important 1.3–1.55 μm region. The PL peak positions for the QDs shift to low energy as the InAs coverage increases, corresponding to increase in QD size. The room temperature PL peak at 1.58 μm was observed from defect-free InAs QDs with average dot height of 3.6 nm.  相似文献   

6.
Ge/Si superlattices containing Ge quantum dots were prepared by molecular beam epitaxy and studied by resonant Raman scattering. It is shown that these structures possess vibrational properties of both two-and zero-dimensional objects. The folded acoustic phonons observed in the low-frequency region of the spectrum (up to 15th order) are typical for planar superlattices. The acoustic phonon lines overlap with a broad emission continuum that is due to the violation of the wave-vector conservation law by the quantum dots. An analysis of the Ge and Ge-Si optical phonons indicates that the Ge quantum dots are pseudoamorphous and that mixing of the Ge and Si atoms is insignificant. The longitudinal optical phonons undergo a low-frequency shift upon increasing laser excitation energy (2.54–2.71 eV) because of the confinement effect in small-sized quantum dots, which dominate resonant Raman scattering.  相似文献   

7.
Raman scattering by optical phonons in InxGa1 ? x As/AlAs nanostructures with quantum dots has been studied experimentally for compositions corresponding to x = 0.3?1 under out-resonance conditions. Features due to scattering by GaAs-and InAs-like optical phonons in quantum dots have been detected, and the phonon frequencies have been determined as a function of the dot composition. With increasing excitation energy, a red shift is observed in the frequency of the GaAs-like phonon in quantum dots, which testifies to Raman scattering selective by the size of quantum dots. Under resonant conditions, multiphonon light scattering by optical and interface phonons is observed up to the third order, including overtones of the first-order phonons of InGaAs and AlAs materials and their combinations.  相似文献   

8.
Quantum dot structures designed for multi-color infrared detection and high temperature (or room temperature) operation are demonstrated. A novel approach, tunneling quantum dot (T-QD), was successfully demonstrated with a detector that can be operated at room temperature due to the reduction of the dark current by blocking barriers incorporated into the structure. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color tunneling-quantum dot infrared photodetector (T-QDIP) with photoresponse peaks at 6 μm and 17 μm operating at room temperature will be discussed. Furthermore, the idea can be used to develop terahertz T-QD detectors operating at high temperatures. Successful results obtained for a T-QDIP designed for THz operations are presented. Another approach, bi-layer quantum dot, uses two layers of InAs quantum dots (QDs) with different sizes separated by a thin GaAs layer. The detector response was observed at three distinct wavelengths in short-, mid-, and far-infrared regions (5.6, 8.0, and 23.0 μm). Based on theoretical calculations, photoluminescence and infrared spectral measurements, the 5.6 and 23.0 μm peaks are connected to the states in smaller QDs in the structure. The narrow peaks emphasize the uniform size distribution of QDs grown by molecular beam epitaxy. These detectors can be employed in numerous applications such as environmental monitoring, spectroscopy, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.  相似文献   

9.
One of the scientific challenges of growing InN quantum dots (QDs), using Molecular beam epitaxy (MBE), is to understand the fundamental processes that control the morphology and distribution of QDs. A systematic manipulation of the morphology, optical emission, and structural properties of InN/Si (111) QDs is demonstrated by changing the growth kinetics parameters such as flux rate and growth time. Due to the large lattice mismatch, between InN and Si (~8%), the dots formed from the Strannski–Krastanow (S–K) growth mode are dislocated. Despite the variations in strain (residual) and the shape, both the dot size and pair separation distribution show the scaling behavior. We observed that the distribution of dot sizes, for samples grown under varying conditions, follow the scaling function.  相似文献   

10.
We have studied quantum dots (QDs) fabricated by activated spinodal decomposition (ASD) of an InGa(Al)As alloy deposited on top of self-organized InAs nanoscale stressors on GaAs substrate. Such a growth sequence results in a strong red shift of the PL emission down to 1.3 μm at 300 K. This red shift is caused by the formation of In-rich areas in the vicinity of the InAs islands, which increase the effective dot size. Beyond a certain critical InAs composition or nominal thickness of the InGa(Al)As layer the PL line shifts back towards higher energies. Adding Al to the alloy increases the red shift for a given In concentration. Room temperature lasing near 1.3 μm with threshold current densities of about 85 A/cm2 was achieved for lasers based on three-fold stacked ASD-formed QDs, with a maximum cw output power of 2.7 W.  相似文献   

11.
Using polarization-sensitive photoluminescence and photoluminescence excitation spectroscopy, we study single InAs/GaAs self-assembled quantum dots. The dots were embedded in an n-type, Schottky diode structure allowing for control of the charge state. We present here the exciton, singly charged exciton (positive and negative trions), and the twice negatively charged exciton. For non-resonant excitation below the wetting layer, we observed a large degree of polarization memory from the radiative recombination of both the positive and negative trions. In excitation spectra, through the p-shell, we have found several sharp resonances in the emission from the s-shell recombination of the dot in all charged states. Some of these excitation resonances exhibit strong coulomb shifts upon addition of charges into the quantum dot. One particular resonance of the negatively charged trion was found to exhibit a fine structure doublet under circular polarization. This observation is explained in terms of resonant absorption into the triplet states of the negative trion.  相似文献   

12.
The emission of light in the blue-green region from cubic InxGa1-xN alloys grown by molecular beam epitaxy is observed at room temperature and 30 K. By using selective resonant Raman spectroscopy (RRS) we demonstrate that the emission is due to quantum confinement effects taking place in phase-separated In-rich quantum dots formed in the layers. RRS data show that the In content of the dots fluctuates across the volume of the layers. We find that dot size and alloy fluctuation determine the emission wavelengths.  相似文献   

13.
This paper reports on the results of resonant Raman scattering investigations of the fundamental vibrations in Ge/Si structures with strained and relaxed germanium quantum dots. Self-assembled strained Ge/Si quantum dots are grown by molecular-beam epitaxy on Si(001) substrates. An ultrathin SiO2 layer is grown prior to the deposition of a germanium layer with the aim of forming relaxed germanium quantum dots. The use of resonant Raman scattering (selective with respect to quantum dot size) made it possible to assign unambiguously the line observed in the vicinity of 300 cm?1 to optical phonons confined in relaxed germanium quantum dots. The influence of confinement effects and mechanical stresses on the vibrational spectra of the structures with germanium quantum dots is analyzed.  相似文献   

14.
首次用谷胱甘肽(GSH)作为稳定剂,在水溶液中制备了稳定地发射绿色荧光和橙色荧光的两种 CdSe/CdS核/壳结构的纳米量子点。用紫外-可见分光光度和荧光光谱方法研究了CdSe/CdS量子点的发光特性。透射电镜(TEM)结果表明CdSe/CdS量子点近似球形,在水中分散性良好,比CdSe量子点具有更优异的发光特性,发射光谱和吸收光谱都有红移现象。将CdSe/CdS量子点与鼠抗人CD3抗体连接,制备了水溶性CdSe/CdS-CD3复合物探针,对人血淋巴细胞进行标记和成像。结果表明用该探针对人血淋巴细胞成像清晰,其荧光在30 min的连续蓝光激发下无明显衰退,而FITC荧光在20 min内基本完全猝灭。  相似文献   

15.
李天信  翁钱春  鹿建  夏辉  安正华  陈张海  陈平平  陆卫 《物理学报》2018,67(22):227301-227301
半导体量子点是研究光子与电子态相互作用的优选固态体系,并在光子探测和发射两个方向上展现出独特的技术机遇.其中基于量子点的共振隧穿结构被认为在单光子探测方面综合性能最佳,但受到光子数识别、工作温度两个关键性能的制约.利用腔模激子态外场耦合效应,有望获得圆偏振态可控的高频单光子发射.本文介绍作者提出的量子点耦合共振隧穿(QD-cRTD)的光子探测机理,利用量子点量子阱复合电子态的隧穿放大,将QD-cRTD光子探测的工作温度由液氦提高至液氮条件,光电响应的增益达到107以上,并具备双光子识别能力;同时,由量子点能级的直接吸收,原型器件获得了近红外的光子响应.在量子点光子发射机理的研究方面,作者实现了量子点激子跃迁和微腔腔模共振耦合的磁场调控,在Purcell效应的作用下增强激子自旋态的自发辐射速率,从而增强量子点中左旋或右旋圆偏振光的发射强度,圆偏度达到90%以上,形成一种光子自旋可控发射的新途径.  相似文献   

16.
We have investigated the temperature dependence of the photoluminescence (PL) spectrum of self-organized InAs/GaAs quantum dots. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy image for uncapped sample. The power-dependent PL study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. Due to lacking of the couple between quantum dots, an unusual temperature dependence of the linewidth and peak energy of the dot ensemble photoluminescence has not been observed. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 μm at room temperature.  相似文献   

17.
Self-assembled GaAs/AlGaAs quantum dot pairs (QDPs) are grown by molecular beam epitaxy using high temperature droplet epitaxy technique. A typical QDP consists of dual-size quantum dots as observed based on atomic force microscopy image. The average height of quantum dot is 5.7 nm for the large quantum dots and 4.6 nm for the small ones. The average peak-to-peak distance of the two dots is about 75 nm. The optical properties of GaAs QDPs are studied by measuring excitation power-dependent and temperature-dependent photoluminescence. Unique photoluminescence properties have been observed from both excitation power-dependent and temperature-dependent measurements. Excitation power-dependent as well as temperature-dependent PL measurements have suggested lateral exciton transfer in the QDPs.  相似文献   

18.
红光量子点掺杂PVK体系的发光特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘志民  赵谡玲  徐征  高松  杨一帆 《物理学报》2014,63(9):97302-097302
无热处理制备了红光CdSe/ZnS量子点掺杂PVK的ITO/PVK:QDs/Alq3/Al结构电致发光器件.测试器件的发光光谱和电学特性等,研究了掺杂浓度(质量分数)对体系发光特性的影响,将非掺杂与掺杂体系做了比较,提出了优化掺杂体系的一些可行方案.量子点掺杂浓度较低时,主要为Alq3的发光;掺杂浓度为20%时,Alq3的发光得到抑制,红光发射最佳;继续增大掺杂浓度,QDs发光峰发生微弱红移,器件性能变差.与非掺杂体系相比,掺杂浓度合适的PVK:QDs体系大大提高了器件的稳定性.  相似文献   

19.
The Optical characteristics of InAs quantum dots (QDs) embeded in InAlGaAs on InP have been investigated by photoluminescence (PL) spectroscopy and time-resolved PL. Four different QD samples are grown by using molecular beam epitaxy, and all the QD samples have five-stacked InAs quantum dot layers with a different InAlGaAs barrier thickness. The PL yield from InAs QDs was increased with an increase in the thickness of the InAlGaAs barrier, and the emission peak positions of all InAs QD samples were measured around 1.5 μm at room temperature. The decay time of the carrier in InAs QDs is decreased abruptly in the QD sample with the 5 nm InAlGaAs barrier. This feature is explained by the tunneling and coupling effect in the vertical direction and probably defect generation.  相似文献   

20.
In this work, it is shown how different carrier recombination paths significantly broaden the photoluminescence (PL) emission bandwidth observed in type‐II self‐assembled SiGe/Si(001) quantum dots (QDs). QDs grown by molecular beam epitaxy with very homogeneous size distribution, onion‐shaped composition profile, and Si capping layer thicknesses varying from 0 to 1100 nm are utilized to assess the optical carrier‐recombination paths. By using high‐energy photons for PL excitation, electron‐hole pairs can be selectively generated either above or below the QD layer and, thus, clearly access two radiative carrier recombination channels. Fitting the charge carrier capture‐, loss‐ and recombination‐dynamics to PL time‐decay curves measured for different experimental configurations allows to obtain quantitative information of carrier capture‐, excitonic‐emission‐, and Auger‐recombination rates in this type‐II nano‐system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号