共查询到20条相似文献,搜索用时 0 毫秒
1.
Chin‐Yang Yu James W. Kingsley David G. Lidzey Michael L. Turner 《Macromolecular rapid communications》2009,30(22):1889-1892
Fully conjugated block copolymers containing 1,4‐ and 1,3‐phenylenevinylene repeating units can be prepared by the sequential ring opening metathesis polymerization of strained cyclophanedienes, initiated by ruthenium carbene complexes (Grubbs metathesis catalysts). The molecular weight of the constituent blocks can be tightly controlled by changing the catalyst to monomer ratio and the volume fraction of the block copolymers independently tailored by the ratio of the monomers employed. Extensive phase separation between the constituent blocks is observed in thin films of these polymers by atomic force microscopy and efficient energy transfer between blocks containing 1,4‐ and 1,3‐phenylenevinylene units can be seen in the photoluminescence of these materials.
2.
Mohammad Yasir Peng Liu Jens C. Markwart Oksana Suraeva Frederik R. Wurm Jansie Smart Marco Lattuada Andreas F. M. Kilbinger 《Angewandte Chemie (International ed. in English)》2020,59(32):13597-13601
Using a one‐step synthetic route for block copolymers avoids the repeated addition of monomers to the polymerization mixture, which can easily lead to contamination and, therefore, to the unwanted termination of chain growth. For this purpose, monomers ( M1 – M5 ) with different steric hindrances and different propagation rates are explored. Copolymerization of M1 (propagating rapidly) with M2 (propagating slowly), M1 with M3 (propagating extremely slowly) and M4 (propagating rapidly) with M5 (propagating slowly) yielded diblock‐like copolymers using Grubbs’ first ( G1 ) or third generation catalyst ( G3 ). The monomer consumption was followed by 1H NMR spectroscopy, which revealed vastly different reactivity ratios for M1 and M2 . In the case of M1 and M3 , we observed the highest difference in reactivity ratios (r1=324 and r2=0.003) ever reported for a copolymerization method. A triblock‐like copolymer was also synthesized using G3 by first allowing the consumption of the mixture of M1 and M2 and then adding M1 again. In addition, in order to measure the fast reaction rates of the G3 catalyst with M1 , we report a novel retardation technique based on an unusual reversible G3 Fischer‐carbene to G3 benzylidene/alkylidene transformation. 相似文献
3.
Alaa S. Abd‐El‐Aziz Rawda M. Okasha Leslie J. May Jeff Hurd 《Journal of polymer science. Part A, Polymer chemistry》2006,44(9):3053-3070
A number of classes of polynorbornenes containing cationic iron moieties within their side chains were prepared via ring‐opening metathesis polymerization with a ruthenium‐based catalyst. The iron‐containing polymers displayed excellent solubility in polar organic solvents. The weight‐average molecular weights of these polymeric materials were estimated to be in the range of 18,000–48,000. Thermogravimetric analysis of these polymers showed two distinct weight losses. The first weight loss was in the range of 204–260 °C and was due to the loss of the metallic moieties, whereas the second weight loss was observed at 368–512 °C and was due to the degradation of the polymer backbone. Cyclic voltammetry studies of the iron‐containing polymers showed that the 18 e? cationic iron centers underwent a reduction to give the neutral 19 e? complexes at half‐wave potential (E1/2) = ?1.105 V. Photolysis of the metallated polymers led to the isolation of the norbornene polymers in very good yields. Differential scanning calorimetry studies showed a sharp increase in the glass‐transition temperatures up to 91 °C when rigid aromatic side chains were incorporated into the norbornene polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3053–3070, 2006 相似文献
4.
Incorporating peptide blocks into block copolymers opens up new realms of bioactive or smart materials. Because there are such a variety of peptides, polymers, and hybrid architectures that can be imagined, there are many different routes available for the synthesis of these chimera molecules. This review summarizes the contemporary strategies in combining synthesis techniques to create well‐defined peptide‐polymer hybrids that retain the vital aspects of each disparate block. Living polymerization can be united with the molecular‐level control afforded by peptide blocks to yield block copolymers that not only have precisely defined primary structures, but that also interact with other (bio)molecules in a well defined manner.
5.
Summary: A polyfunctional 1,1‐diphenylethylene (DPE) agent was prepared by ring‐opening metathesis polymerization of a DPE‐functionalized norbornene monomer. Its reaction with sec‐butyllithium gave a novel polyfunctional anionic macroinitiator with one 1,1‐diarylalkyllithium initiation functionality per repeating unit. The significant applicability of this polyfunctional anionic macroinitiator was demonstrated by its excellent initiation efficiencies in anionic polymerization and a preparation of a graft copolymer with well‐controlled long and dense diblock grafts.
6.
Weizhong Yuan Jinying Yuan Mi Zhou Xiaofeng Sui 《Journal of polymer science. Part A, Polymer chemistry》2006,44(22):6575-6586
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006 相似文献
7.
Dr. Mohammad Yasir Dr. Peng Liu Dr. Jens C. Markwart Oksana Suraeva Dr. Frederik R. Wurm Jansie Smart Prof. Marco Lattuada Prof. Andreas F. M. Kilbinger 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(32):13699-13703
Using a one-step synthetic route for block copolymers avoids the repeated addition of monomers to the polymerization mixture, which can easily lead to contamination and, therefore, to the unwanted termination of chain growth. For this purpose, monomers ( M1 – M5 ) with different steric hindrances and different propagation rates are explored. Copolymerization of M1 (propagating rapidly) with M2 (propagating slowly), M1 with M3 (propagating extremely slowly) and M4 (propagating rapidly) with M5 (propagating slowly) yielded diblock-like copolymers using Grubbs’ first ( G1 ) or third generation catalyst ( G3 ). The monomer consumption was followed by 1H NMR spectroscopy, which revealed vastly different reactivity ratios for M1 and M2 . In the case of M1 and M3 , we observed the highest difference in reactivity ratios (r1=324 and r2=0.003) ever reported for a copolymerization method. A triblock-like copolymer was also synthesized using G3 by first allowing the consumption of the mixture of M1 and M2 and then adding M1 again. In addition, in order to measure the fast reaction rates of the G3 catalyst with M1 , we report a novel retardation technique based on an unusual reversible G3 Fischer-carbene to G3 benzylidene/alkylidene transformation. 相似文献
8.
《Macromolecular rapid communications》2017,38(6)
The accomplishments in the copolymerization of ethylene with cyclic olefins such as norborn‐2‐ene or cis‐cyclooctene via tandem ring‐opening metathesis polymerization (ROMP) – vinyl insertion polymerization (VIP) are outlined. This approach provides polyolefins with high molecular weight (600,000 < Mn < 4,500,000 g mol−1) and substantial amounts of double bonds along the polymer main chain. Olefinic moieties in ROMP‐derived polymers can be converted into hydroxyl, amino, silyl, ester, or carboxylate groups by different means including controlled radical polymerization‐based grafting. The underlying concept for the switch in polymerization mechanism, the resulting pre‐catalyst requirements, limitations and challenges and the chemistry developed for functionalizing unsaturated polymers are outlined in detail.
9.
Alvaro Carrillo Ravi S. Kane 《Journal of polymer science. Part A, Polymer chemistry》2004,42(13):3352-3359
This article describes the formation and characterization of self‐assembled nanoparticles of controlled sizes based on amphiphilic block copolymers synthesized by ring‐opening metathesis polymerization. We synthesized a novel hydrophobic derivative of norbornene; this monomer could be polymerized using Grubbs' catalyst [Cl2Ru(CHPh)(PCy3)2] forming polymers of controlled molecular weight. We synthesized amphiphilic block copolymers of controlled composition and showed that they assemble into nanoparticles of controlled size. The nanoparticles were characterized using dynamic light scattering and transmission electron microscopy. Tuning the composition of the block copolymer enables the tuning of the diameters of the nanoparticles in the 30‐ to 80‐nm range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3352–3359, 2004 相似文献
10.
Tobias Rudolph Adam Nunns Steffi Stumpf Christian Pietsch Felix H. Schacher 《Macromolecular rapid communications》2015,36(18):1651-1657
The step‐wise solution self‐assembly of double crystalline organometallic poly(ferrocenyldimethylsilane)‐block‐poly(2‐iso‐propyl‐2‐oxazoline) (PFDMS‐b‐PiPrOx) diblock copolymers is demonstrated. Two block copolymers are obtained by copper‐catalyzed azide‐alkyne cycloaddition (CuAAC), featuring PFDMS/PiPrOx weight fractions of 46/54 (PFDMS30‐b‐PiPrOx75) and 30/70 (PFDMS30‐b‐PiPrOx155). Nonsolvent induced crystallization of PFDMS in acetone leads in both cases to cylindrical micelles with a PFDMS core. Afterward, the structures are transferred into water for sequential temperature‐induced crystallization of the PiPrOx corona, leading to hierarchical double crystalline superstructures, which are investigated using scanning electron microscopy, wide angle X‐ray scattering, and differential scanning calorimetry.
11.
Saide Cui Xin Wang Zhenjiang Li Qiguo Zhang Wenzhuo Wu Jingjing Liu Hao Wu Cheng Chen Kai Guo 《Macromolecular rapid communications》2014,35(22):1954-1959
Novel amphiphilic polypeptoid‐polyester diblock copolymers based on poly(sarcosine) (PSar) and poly(ε‐caprolactone) (PCL) are synthesized by a one‐pot glovebox‐free approach. In this method, sarcosine N‐carboxy anhydride (Sar‐NCA) is firstly polymerized in the presence of benzylamine under N2 flow, then the resulting poly(sarcosine) is used in situ as the macroinitiator for the ring‐opening polymerization (ROP) of ε‐caprolactone using tin(II) octanoate as a catalyst. The degree of polymerization of each block is controlled by various feed ratios of monomer/initiator. The diblock copolymers with controlled molecular weight and narrow molecular weight distributions (ĐM < 1.2) are characterized by 1H NMR, 13C NMR, and size‐exclusion chromatography. The self‐assembly behavior of PSar‐b‐PCL in water is investigated by dynamic light scattering (DLS) and transmission electron microscopy. DLS results reveal that the diblock copolymers associate into nanoparticles with average hydrodynamic diameters (DH) around 100 nm in water, which may be used as drug delivery carriers.
12.
Haibin Gu Roberto Ciganda Ricardo Hernandez Patricia Castel Pengxiang Zhao Jaime Ruiz Didier Astruc 《Macromolecular rapid communications》2016,37(7):630-636
Diblock metallopolymer polyelectrolytes containing the two redox‐robust cationic sandwich units [CoCp′Cp]+ and [FeCp′(η6‐C6Me6)]+ (Cp = η5‐C5H5; Cp′ = η5‐C5H4‐) as hexafluorophosphate ([PF6]−) salts are synthesized by ring‐opening metathesis polymerization using Grubbs' third generation catalyst. Their electrochemical properties show full chemical and electrochemical reversibilities allowing fine determination of the copolymer molecular weight using Bard–Anson's electrochemical method by cyclic voltammetry.
13.
Rong Wang Jinglei Hu Zhibin Jiang Dongshan Zhou 《Macromolecular theory and simulations》2005,14(4):256-266
Summary: We studied the two‐dimensional (2D) microphase‐separated morphology of linear ABCD tetrablock copolymers by self‐consistent field theory. By varying the interaction parameters and the compositions, we found at least twelve structures, two of which – “four‐color” lamellae and “three‐color” core‐shell hexagonal phase – prove the existing experimental observations. These morphologies were discussed in correlation with the volume fraction of the components and the interaction parameters. A specific behavior of symmetrical tetrablock copolymers, i.e., fA = fD and fB = fC, is that the stable phases are lamellae, which is different from symmetrical ABC triblock copolymer having order‐to‐order transition. These results are helpful for the design of new block copolymer‐based nanomaterials.
14.
Anne‐Claire Le Meur Cyril Aymonier Valérie Heroguez 《Journal of polymer science. Part A, Polymer chemistry》2012,50(9):1746-1754
This article proposes the first report on the synthesis of nanometric crosslinked polynorbornene particles by ring‐opening metathesis polymerization in dispersion using ruthenium‐based complex (PCy3)2Cl2Ru?CHPh as initiator. Stable but raspberry‐shaped particles were obtained. In this study, a particular attention was paid to the influence of the crosslinker nature and addition mode on reaction kinetics and morphology of the latex particles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
15.
Abraham Chemtob Valrie Heroguez Yves Gnanou 《Macromolecular rapid communications》2005,26(21):1711-1715
Summary: Fully linear polyethylene‐based latexes have been prepared by the hydrogenation of polybuta‐1,4‐diene dispersions. The latter were synthesized via dispersion ring‐opening metathesis polymerization of cycloocta‐1,5‐diene, and hydrogenated using RuCl2(PPh3)3 as catalyst, without any further treatment. A high hydrogenation efficiency was achieved as demonstrated by different techniques including DSC, and 1H NMR and FT‐IR spectroscopy. The hydrogenation process could be carried out without detrimental effect on particle size and colloidal stability as evidenced by optical microscopy and light scattering analysis.
16.
Patricia Gumbley Xiaoran Hu John A. Lawrence Samuel W. Thomas 《Macromolecular rapid communications》2013,34(23-24):1838-1843
This communication describes photoresponsive gels, prepared using ring‐opening metathesis polymerization (ROMP), that dissolve upon irradiation with ultraviolet light. Exposure of mixtures of norbornene‐type ROMP monomers and new photoreactive cross‐linkers comprising two norbornene units bound through a chain containing o‐nitrobenzyl esters (NBEs) to well‐known ruthenium carbene catalysts gave cross‐linked polymer networks that swelled in organic solvents or water depending on the structure of the monomer. These gels became homogeneous upon irradiation with UV light, consistent with breaking of the cross‐links through photolysis of the NBE groups. The irradiation time required for homogenization of the gels depended on the cross‐link density and the structure of the photoresponsive cross‐linker.
17.
18.
Polyglycidol Based Amphiphilic Double‐Comb Copolymers and Their Self‐Association in Aqueous Solution
Firat Ozdemir Helmut Keul Ahmed Mourran Martin Moeller 《Macromolecular rapid communications》2011,32(13):1007-1013
Herein, we report synthesis and self‐association properties of amphiphilic double‐comb polymers with polyglycidol backbones. First, a bifunctional polyglycidol precursor is synthesized via monomer activated anionic polymerization. Next, two efficient and orthogonal polymer analogous reactions are carried out for grafting hydrophilic oligoethylene glycol side chains and hydrophobic linear aliphatic side‐chains. The polymers are analyzed by means of NMR, GPC, and DSC. From the DSC analysis of the bulk samples it is evident that aliphatic side chains segregate from the polar backbone and thus crystallize. Furthermore, in aqueous media the double‐comb polymers spontaneously self‐assemble to form a multilayer structure. The present results pave a way to tailor and design amphiphilic polymers based on glycidols. Major advantages are spontaneous self‐assembly in water and the possibility to form onion polymersomes relevant to encapsulation.
19.
Yuushou Nakayama Masaya Tanimoto Takeshi Shiono 《Macromolecular rapid communications》2007,28(5):646-650
A series of pentavalent tantalum and niobium complexes with aryloxy ligands was prepared, and their catalytic behavior for the ROMP of norbornene was studied in the presence of an alkylaluminum cocatalyst. Tantalum complexes 1 – 4 showed very high activity for the ROMP of NBE in combination with iBu3Al to give high‐molecular‐weight polymers. In contrast, the niobium complexes 5 and 6 , as well as NbCl5, exhibited very high activity upon activation with Me3Al to give high‐molecular‐weight polymers.
20.
Block copolymers consisting exclusively of a silicon–oxygen backbone are synthesized by sequential anionic ring‐opening polymerization of different cyclic siloxane monomers. After formation of a poly(dimethylsiloxane) (PDMS) block by butyllithium‐initiated polymerization of D3, a functional second block is generated by subsequent addition of tetramethyl tetravinyl cyclotetrasiloxane (D4V), resulting in diblock copolymers comprised a simple PDMS block and a functional poly(methylvinylsiloxane) (PMVS) block. Polymers of varying block length ratios were obtained and characterized. The vinyl groups of the second block can be easily modified with a variety of side chains using hydrosilylation chemistry to attach compounds with Si—H bond. Conversion of the hydrosilylation used for polymer modification was investigated. 相似文献