首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An organosilane with an alkyne group at the non‐condensable end, [(2‐propynylcarbamate)propyl]triethoxysilane, has been synthesized. Condensation of this organosilane with tetraethoxysilane can be achieved by a co‐condensation strategy to produce silica nanoparticles with surface alkyne functionality. The size and uniformity of size distribution of the silica nanoparticles are influenced by varying the concentration of the added organosilane. The alkyne‐functionalized silica nanoparticles are coupled directly with azide‐modified polymers by ‘click chemistry’ to yield organic–inorganic hybrid nanomaterials.

  相似文献   


2.
PS grafted silica nanoparticles have been prepared by a tandem process that simultaneously employs RAFT polymerization and click chemistry. In a single pot procedure, azide‐modified silica, an alkyne functionalized RAFT agent and styrene are combined to produce the desired product. As deduced by thermal gravimetric and elemental analysis, the grafting density of PS on the silica in the tandem process is intermediate between analogous “grafting to” and “grafting from” techniques for preparing PS brushes on silica. Relative rates of RAFT polymerization and click reaction can be altered to control grafting density.

  相似文献   


3.
Poly(dimethylsiloxane) copolymers were synthesized directly from AA/BB monomers employing a CuAAC reaction (click chemistry) in a polyaddition approach. Using organic dialkynes and oligo(siloxane)s end‐functionalized with azide moieties it was possible to obtain siloxane‐based copolymers with TPE properties by click chemistry for the first time. As seen from DSC experiments, properties were strongly dependent on the incorporated organic comonomer.

  相似文献   


4.
The successful encapsulation of reactive components for the azide/alkyne‐“click”‐reaction is reported featuring for the first time the use of a liquid polymer as reactive component. A liquid, azido‐telechelic three‐arm star poly(isobutylene) ( = 3900 g · mol−1) as well as trivalent alkynes were encapsulated into micron‐sized capsules and embedded into a polymer‐matrix (high‐molecular weight poly(isobutylene), = 250 000 g · mol−1). Using (CuIBr(PPh3)3) as catalyst for the azide/alkyne‐“click”‐reaction, crosslinking of the two components at 40 °C is observed within 380 min and as fast as 10 min at 80 °C. Significant recovery of the tensile storage modulus was observed in a material containing 10 wt.‐% and accordingly 5 wt.‐% capsules including the reactive components within 5 d at room temperature, thus proving a new concept for materials with self‐healing properties.

  相似文献   


5.
α‐Methoxy‐ω‐alkyne poly(ethylene glycol) (PEG) was tagged with pendent N‐hydroxy‐succinimidyl activated esters by photografting of a molecular clip. This easily synthesized heterofunctional PEG was found to be a versatile building block for (i) conjugation with an amino derivative and (ii) grafting to azido functional aliphatic polyesters backbone by Huisgen's 1,3‐dipolar cycloaddition. This original combination of “clip” and “click” reactions provides a versatile and straightforward pathway for the synthesis of functional amphiphilic and degradable copolymers valuable for biomedical applications such as in drug‐delivery.

  相似文献   


6.
7.
The lithium salt of 2,6‐difluoro‐2′‐sulfobenzophenone was conveniently synthesized in one‐pot by reacting 2,6‐difluorophenyllithium with 2‐sulfobenzoic acid cyclic anhydride in THF at −70 °C whereafter the product crystallized out of solution. A poly(arylene ether) and a poly(arylene sulfide) were prepared by polycondensation reactions to demonstrate the reactivity and efficacy of this new monomer to produce sulfonated high‐molecular weight aromatic polymers for fuel cell proton‐exchange membranes. This work demonstrated that organolithium chemistry may offer versatile and straightforward pathways to new functional monomers with fluorine atoms activated for nucleophilic aromatic substitution reactions.

  相似文献   


8.
One‐dimensional methyl orange fibrils can be easily prepared. They are stable in acidic aqueous solutions and soluble in neutral water. When used to synthesize conducting polymer microtubules, the fibrils act as “hard templates” formally but as “soft templates” effectively. Microtubular structures of polypyrrole, polyaniline, and poly(3,4‐ethylenedioxythiophene) have been achieved successfully via such water‐soluble versatile templates.

  相似文献   


9.
Novel glucosamine hydrochloride functionalized water‐soluble conjugated polyfluorene was easily synthesized through Cu(I)‐catalyzed azide/alkyne “click” ligation and Suzuki coupling polymerization. The water‐solubility and biocompatibility of the polymer were improved after grafting glucosamine hydrochloride to the side chains of the conjugated polymer. As a fluorescent model system of chitosan, its interaction with single‐stranded DNA was studied by spectrofluorometric titration.

  相似文献   


10.
11.
Two kinds of representative polymers, poly(N‐isopropylacrylamide) (PNIPAAm) and β‐cyclodextrin (β‐CD) were selected and modified with azide and alkyne fucntional groups, respectively. When the solutions of these two modified polymers were mixed together, a cross‐linking reaction, a type of Huisgen's 1,3‐dipolar azide‐alkyne cycloaddition, occurred in the presence of Cu(I) catalyst. The strategy described here provides several advantages for the hydrogel formation including mild reaction conditions and controllable gelation rate. The resulted hydrogels were studied in terms of scanning electric microscopy (SEM), equilibrium swelling ratio and swelling/shrinking kinetics. The data obtained demonstrated the hydrogels had a porous structure as well as favorable thermosensitivity.

  相似文献   


12.
We have synthesized a “universal ligand” incorporating a phosphonate surface anchor and a terminal alkyne moiety which binds to TiO2 nanoparticles and exhibits excellent dispersity in organic solvents. The alkyne functionality permits attachment of azide terminated polymer shells using “click” chemistry. Thus TiO2 core nanoparticles have been encapsulated with both polystyrene and poly(t‐butyl acrylate) shells. The TiO2‐poly(t‐butyl acrylate) core shell nanoparticles are amenable to further chemical transformation into TiO2‐poly(acrylic acid) nanoparticles through ester hydrolysis. These TiO2‐polyacrylic acid nanoparticles are dispersible in aqueous solution. The resulting core‐shell nanoparticles have been incorporated as high K dielectric films in capacitor and organic thin film transistor devices and are promising new materials for flexible electronics applications.

  相似文献   


13.
Sixteen parallel polymerization reactions of 2‐ethyl‐2‐oxazoline have been performed at different temperatures in an automated synthesizer that allowed individual heating of each reactor. During the reactions samples were taken automatically, which were characterized by means of both online GPC and offline GC, in order to optimize the reaction temperature and to determine the activation energy of the polymerization.

  相似文献   


14.
New multifunctional copoly(2‐oxazoline) nanoparticles were prepared for cell studies. The polymer contains double‐bond side chains as potential reaction sites for “thio”‐click reactions as well as a fluorescein label covalently bound to the polymer backbone. Using the nanoprecipitation technique, spherical nanoparticles of 200–800 nm were obtained. Confocal laser scanning microscopy measurements revealed the cellular uptake of the nanoparticles.

  相似文献   


15.
This paper highlights the powerful combination of reversible addition–fragmentation chain transfer (RAFT) radical polymerization and various click/coupling chemistries. This is not an exhaustive review but rather an overview demonstrating the impressive possibilities that the “marriage” of these two synthetic approaches offers in modern macromolecular design and synthesis.

  相似文献   


16.
Summary: New polymer gelators consisting of poly(propylene glycol) or poly(ethylene glycol) and L ‐lysine‐based low‐molecular‐weight gelators have been developed. These polymer gelators were synthesized according to a simple procedure with high reaction yield, and formed organogels in many organic solvents. The organogelation mechanism was proposed from the transmission electron microscopy and FTIR spectroscopy studies.

Structures of the polymer gelators synthesized here.  相似文献   


17.
18.
19.
Summary: Magnetic nanoparticles have been prepared by a co‐precipitation method and modified with methacryloxypropyltrimethoxysilane. Magnetic molecularly imprinted polymer particles have been prepared by suspension polymerization in silicone oil. The particles possess a high affinity to the template molecules and are rapidly separated under a magnetic field.

SEM photograph of magnetic MIP particles.  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号