首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The conformational stability of aminomethanol and its methylated derivatives has been investigated by means of ab initio methods in the gas phase and aqueous solution. Among the computational levels employed, HF/6‐31G**//HF/6‐31G** calculations correctly describe the conformational features of this series of compounds, and agree well with the results obtained using larger basis sets and including ZPE or electron correlation corrections. Calculated energies and geometries follow the known trends associated to the generalized anomeric effect. Thus, the most stable conformers exhibit preferences for the trans orientations of the Lp N C O and Lp O C N moieties. However, reverse anomeric effects are observed when a methyl group is bonded to the oxygen, because the Lp O C N unit prefers a gauche orientation (that is, trans Me O C N). The natural bond orbital (NBO) method was employed to explain the cited conformational preferences. According to the NBO results, trans arrangements are preferred because the stabilization due to charge delocalization is more important than electrostatic and steric contributions. This explanation agrees with the conclusions obtained by other independent procedures based on energy decomposition schemes. The NBO method was also used to explain the origin of the rotational barriers around the C O and C N bonds in terms of the balance between unfavorable hyperconjugation and electrostatic and steric effects. Changes in conformational stability caused by methylations in different molecular positions were also explained by the influence of the methyl groups on lone‐pair delocalization and on steric effects. Finally, the effect of solvation was studied by means of the ab initio PCM method, and the significant changes on relative energies found were analyzed. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 462–477, 2000  相似文献   

2.
One‐electron reduction of mononuclear nonheme iron(III) hydroperoxo (FeIII OOH) and iron(III) alkylperoxo (FeIII OOR) complexes by ferrocene (Fc) derivatives resulted in the formation of the corresponding iron(IV) oxo complexes. The conversion rates were dependent on the concentration and oxidation potentials of the electron donors, thus indicating that the reduction of the iron(III) (hydro/alkyl)peroxo complexes to their one‐electron reduced iron(II) (hydro/alkyl)peroxo species is the rate‐determining step, followed by the heterolytic O O bond cleavage of the putative iron(II) (hydro/alkyl)peroxo species to give the iron(IV) oxo complexes. Product analysis supported the heterolytic O O bond‐cleavage mechanism. The present results provide the first example showing the one‐electron reduction of iron(III) (hydro/alkyl)peroxo complexes and the heterolytic O O bond cleavage of iron(II) (hydro/alkyl)peroxo species to form iron(IV) oxo intermediates which occur in nonheme iron enzymatic and Fenton reactions.  相似文献   

3.
Important biological phosphate esters such as sn‐glycerol‐3‐phosphate, glycerol‐2‐phosphate, and phosphoethanolamine were synthesized under hydrothermal conditions. Phosphorus was incorporated into the biomolecules, leading to the formation of C O P type compounds hydrothermally. Only perlite‐catalyzed reaction at 180°C could result in the formation of sn‐glycerol‐3‐phosphate, whereas glycerol‐2‐phosphate could be easily synthesized at 100°C with or without minerals and phosphoethanolamine was obtained within a temperature range of 100 to 120°C. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:161–167, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20591  相似文献   

4.
Correlated ab initio molecular orbital, DFT, QCISD, G3MP2, and QCISD(T) calculations have been used to investigate the geometries, energetics, and mechanisms governing the insertion reactions of 1CH2 into O H and N H bonds of water and ammonia, respectively, in gas phase adopting 6‐311++g(d, p) basis set. It is found that 1CH2 reacts with water and ammonia to produce the ylide‐like intermediates H2C OH2 and H2C NH3, which in turn undergo 1,2‐hydrogen shift to produce methanol and methylamine, respectively. Results obtained indicate that in the gas phase, the ylides and the transition states are located below the reactants' energy levels. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

5.
The effect of the methyl group on the cooperativity between three types of hydrogen bond (O H···O, C H···O, and O H···π) in cyclic complex involving an acetylene and two waters has been studied on the basis of high-level ab initio calculations. The total interaction energy of three hydrogen bonds increases as the number of methyl group in the complex increases. The binding distances of O H···π and O H···O hydrogen bonds shorten, while that of C H···O hydrogen bond elongates with increasing methyl group. This indicates that addition of methyl group leads to enhancement of O H···π and O H···O hydrogen bonds, and weakening of C H···O hydrogen bond, as also shown in frequency shift, chemical shifts, charge populations, and stabilization energies of orbital interactions. Although the presence of methyl group has a complicated effect on different type of hydrogen bond, the cooperativity of three hydrogen bonds increases in general with the addition of methyl group. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

6.
The addition of NO (0 to 400ppm) to mixtures of H2 (ca. 1%) and O2 (0.7 to 22%) has been studied over the temperature range 700 to 825 K, in a flow reactor at atmospheric pressure. The overall effect of NO is to promote the oxidation of H2 but high concentrations of O2 actually inhibit the NO-promoted oxidation of H2. A detailed kinetic mechanism has been constructed and found to describe the experimental observations. The promotion of the oxidation of H2 arises through the catalytic cycle The ability of R.34 to reactivate chains normally terminated by the formation of HO2 is a key feature of this system. The predictions are highly sensitive to the rate of the reaction R.5 and the rate constants for this reaction is the only adjustable parameter required in the model. The value of k5,N2 found to describe all the results has an absolute uncertainty <35%. The uncertainty relative to other important rate constants in the H2? O2 system is less than 10%. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
The reaction of VI2 or TiI3, respectively, with ammonia in the presence of traces of water or oxygen, respectively, leads to [(NH3)5M? O? M(NH3)5]I4 · NH3 with M = V, Ti. Their structures were solved by X-ray single crystal data: Pbca (No. 61), Z = 4, M = V: a = 12.482(4) Å, b = 14.819(6) Å, c = 13.286(5) Å, N(F ? 3σF) = 983, N(variables) = 88, R/Rw = 0.053/0.063, M = Ti: a = 12.628(4) Å, b = 14.970(4) Å, c = 13.359(3) Å, N(F ? 3σF) = 1188, N(variables) = 88, R/Rw = 0.043/0.047. The structures consist of corner sharing octahedra double units [(NH3)5M? O? M(NH3)5]4+ with eclipsed conformation which are stacked together according to the motif of a distorted cubic face centered arrangement for the bridging oxygen atoms. IR spectroscopic investigations of the undeuterated vanadium compound and of 5% deuterated samples hint to N? H … I hydrogen bridge bonds and to remarkable π-bonding between the transition metal and the bridging oxygen atoms.  相似文献   

8.
《Polyhedron》1986,5(3):677-685
Freshly generated solutions of iodine azide (IN3) and iodine isocyanate (INCO) in acetonitrile or carbon tetrachloride add oxidatively to tertiaryaryl derivatives of group VB elements, Ar3M (Ar = Ph, p-tolyl, p-ClC6H4 or p-FC6H4, and M = As, Sb or Bi) and diaryltellurium(II), Ar2Te (Ar = Ph or p-CH3OC6H4) at −10°C to −5°C to give stable covalent monomeric products, Ar3MIX and Ar2TeIX, respectively (where X = N3 or NCO). The mode of bonding of the pseudohalide group to M has been established by solid-state IR spectra. Ar3MI(N3) failed to react with CS2 but reaction with PhNCY (Y = O or S) gave cyclic tetrazole derivatives. Contrasting behaviour was also observed in the metathetic reaction of Ar2MIX and Ar2TeIX with silver pseudohalides [AgX′ (X′ = NCO or NCS)]. The tetraorgano compounds, R4M (M = Sn or Pb, and R = Ph or p-tolyl), and Bu3SnPh failed to react with IN3 and Bu3SnPhINCO but IN3 cleaved one tin-aryl bond from Ar4Sn in the presence of AlCl3. Addition of IN3 and INCO across the olefinic bond of Ph3SnCH2CHCH2 is preferred to tin-allyl bond cleavage. Reactions of hexaaryldileads with IN3 and INCO under appropriate conditions proceeded with the cleavage of a PbPb bond. Parallel reactions of cyanogen halides (CNI and CNBr) resulted in the formation of corresponding triaryllead halides and pseudohalide derivatives.  相似文献   

9.
10.
The values of pKams (Kams represents ionization constant of conjugate acid of amine base in mixed water–acetonitrile solvent) for all amines, except for charged amine bases, show a mild decrease (ca. 0.1–0.4 pK units) with the increase in CH3CN content from 2 to ∼60% v/v. However, the pKams values at 70% v/v CH3CN become nearly equal or slightly larger (by ≤0.7 pK units) than the corresponding pKams at 2% v/v CH3CN for all neutral and charged amines. The values of pKams for phenol increase from 10.17 to 13.38 with the increase in the content of CH3CN from 2 to 70% v/v in mixed aqueous solvent. Taft reaction constants, ρ*, obtained from the plots of pKams against ∑σ* for primary and secondary amines decrease by ca. 0.8 ρ* units with the increase in the CH3CN content from 2 to 70% v/v. The values of pKams show an empirical linear relationship with the corresponding values of pKaw (where pKaw represents the pKa obtained in aqueous solvent containing 2% v/v CH3CN), which allows the estimation of a pKa in mixed H2O CH3CN solvents from that in water. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 146–152, 2000  相似文献   

11.
In this paper, we present a model of potential energy surface for the H2O HCl system, consisting in the exact transformation of quantum chemical input data related to a minimal number of significant configurations. Both molecules are assumed as rigid. The interaction potential is given by an expansion in real spherical harmonics depending on the distance between the two centers of mass of the molecules and on four angles that define their mutual orientation. The main target of this work is the construction of a model of potential energy surface that requires a limited number of single energy points, which is suitable for applications to classical and quantum molecular dynamics simulations, permitting interpolation and further implementation of different sets of input data.  相似文献   

12.
13.
A quantum chemical model is introduced to predict the H‐bond donor strength of monofunctional organic compounds from their ground‐state electronic properties. The model covers ? OH, ? NH, and ? CH as H‐bond donor sites and was calibrated with experimental values for the Abraham H‐bond donor strength parameter A using the ab initio and density functional theory levels HF/6‐31G** and B3LYP/6‐31G**. Starting with the Morokuma analysis of hydrogen bonding, the electrostatic (ES), polarizability (PL), and charge transfer (CT) components were quantified employing local molecular parameters. With hydrogen net atomic charges calculated from both natural population analysis and the ES potential scheme, the ES term turned out to provide only marginal contributions to the Abraham parameter A, except for weak hydrogen bonds associated with acidic ? CH sites. Accordingly, A is governed by PL and CT contributions. The PL component was characterized through a new measure of the local molecular hardness at hydrogen, η(H), which in turn was quantified through empirically defined site‐specific effective donor and acceptor energies, EEocc and EEvac. The latter parameter was also used to address the CT contribution to A. With an initial training set of 77 compounds, HF/6‐31G** yielded a squared correlation coefficient, r2, of 0.91. Essentially identical statistics were achieved for a separate test set of 429 compounds and for the recalibrated model when using all 506 compounds. B3LYP/6‐31G** yielded slightly inferior statistics. The discussion includes subset statistics for compounds containing ? OH, ? NH, and active ? CH sites and a nonlinear model extension with slightly improved statistics (r2 = 0.92). © 2008 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

14.
Attachment of one electron to 1,2-diBeX-benzene and 1,2-diZnX-benzene derivatives leads to the formation of stronger Be Be and Zn Zn interaction compared to the neutral one. This is reflected in the dramatic shortening of the Be Be and Zn Zn distance. The formation of these 2-center-1-electron bonds have also been confirmed by topological survey of electron density using quantum theory of atoms in molecules and electron localization function. The formation of these bonds is expected to render stability to these radical anions. These radical anions are stable toward electron detachment and computed bond dissociation energy values are also significant.  相似文献   

15.
An sp 2 /sp 3 get‐together : A novel and efficient method can be used to synthesize 3,3‐disubstitued oxindoles by the direct intramolecular oxidative coupling of an aryl C? H and a C? H center (see scheme; DMF=N,N‐dimethylformamide).

  相似文献   


16.
A PCM continuum model, at the B3LYP, B3P86, and B3PW91 three‐parameter hybrid DFT methods with 6‐311G** basis set, is used to study the bond dissociation energies (BDEs) of benzyl nitrites. Compared the computed results with the experimental values, it is noted that B3PW91 functional is the best method to compute the BDEs of benzyl nitrites. The solvent and substituent effects on the BDEs of the O? NO bond are analyzed, and it is shown that the BDE of the O? NO bond decreases with the increment of the Hammett constants of substituent groups on benzene for benzyl nitrites except C6H5CH2O? NO. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

17.
18.
In hydrogen‐metal‐phosphorus (H M P) transition metal complexes (proposed as intermediates of H P bond addition to alkynes in the catalytic hydrophosphorylation, hydrophosphinylation, and hydrophospination reactions), alkyne insertion into the metal‐hydrogen bond was found much more facile compared to alkyne insertion into the metal‐phosphorus bond. The conclusion was verified for different metals (Pd, Ni, Pt, and Rh), ligands, and phosphorus groups at various theory levels (B3LYP, B3PW91, BLYP, MP2, and ONIOM). The relative reactivity of the metal complexes in the reaction with alkynes was estimated and decreased in the order of Ni>Pd>Rh>Pt. A trend in relative reactivity was established for various types of phosphorus groups: PR2>P(O)R2>P(O)(OR)2, which showed a decrease in rate upon increasing the number of the oxygen atoms attached to the phosphorus center.  相似文献   

19.
A nanocomposite of Pd? TiO2? SiO2 is developed through a sol‐gel process from the reaction products of titanium isopropoxide followed by mixing the same with palladium linked 3‐glycidoxypropyltrimethoxysilane. The reaction product is sonicated and calcinated to obtain the nanocomposite of Pd? TiO2? SiO2. The calcination at 600 °C yielded an amorphous structure whereas at 900 °C it resulted into a nanocrystalline structure. The nanocomposite of palladium was further characterized by TEM, XRD, IR and EDS. The material acts as an efficient electrocatalyst. Electrocatalysis of ascorbic acid is observed at 0.1 V vs. Ag/AgCl, shows linearity between 1 µM and 1 mM in 0.1 M phosphate buffer (pH 7.0).  相似文献   

20.
We studied electronic structures and reactivity patterns of azo-compound I species (RN-Cpd I) by comparison to O-Cpd I of, e.g., cytochrome P450. The study shows that the RN-Cpd I species are capable of C=C aziridination and C-H amidation, in a two-state mechanism similar to that of O-Cpd I. However, unlike O-Cpd I, here the nitrogen substituent (R) exerts a major impact on structure and reactivity. Thus, it is demonstrated that Fe=NR bonds of RN-Cpd I will generally be substantially longer than Fe=O bonds; electron-withdrawing R groups will generate a very long Fe=N bond, whereas electron-releasing R groups should have the opposite effect and hence a shorter Fe=N bond. The R substituent controls also the reactivity of RN-Cpd I toward C=C and C-H bonds by exerting steric and electronic effects. Our analysis shows that an electron-releasing substituent will lower the barriers for both bond activation reactions, since the electronic factor makes the reactions highly exothermic, while an electron-withdrawing one should raise both barriers. The steric bulk of the substituent is predicted to inhibit more strongly the aziridination reactions. It is predicted that electron-releasing substituents with small bulk will create powerful aziridination reagents, whereas electron-withdrawing substituents like MeSO(2) will prefer C-H bond activation with preference that increases with steric bulk. Finally, the study predicts (i) that the reactions of RN-Cpd I will be less stereospecific than those of O-Cpd I and (ii) that aziridination will be more stereoselective than amidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号