首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A TEMPO bromide salt is used to functionalize a silica surface with nitroxyl moieties. The functionalization reaction takes place in 48 h under mild conditions. In a second step, grafts of styrene‐maleic anhydride copolymer are grown from the functionalized silica surface by heating it in the presence of the monomers. FT‐IR and TGA analysis show that the silica was first functionalized with nitroxide moieties, and then that grafts of styrene‐maleic anhydride grew from the functionalized silica surface. A reaction mechanism is proposed in order to explain the findings. The results suggest that the oxoaminium salts are good candidates for the functionalization and grafting of surfaces that contain hydroxy groups and for the generation of hybrid materials with improved properties.

  相似文献   


2.
Commercially available 1,2‐PB was transformed into a well‐defined reactive intermediate by quantitative bromination. The brominated polymer was used as a polyfunctional macroinitiator for the cationic ring‐opening polymerization of 2‐ethyl‐2‐oxazoline to yield a water‐soluble brush polymer. Nucleophilic substitution of bromide by 1‐methyl imidazole resulted in the formation of polyelectrolyte copolymers consisting of mixed units of imidazolium, bromo, and double bond. These copolymers, which were soluble in water without forming aggregates, were used as stabilizers in the heterophase polymerization of styrene and were also studied for their ionic conducting properties.

  相似文献   


3.
PS grafted silica nanoparticles have been prepared by a tandem process that simultaneously employs RAFT polymerization and click chemistry. In a single pot procedure, azide‐modified silica, an alkyne functionalized RAFT agent and styrene are combined to produce the desired product. As deduced by thermal gravimetric and elemental analysis, the grafting density of PS on the silica in the tandem process is intermediate between analogous “grafting to” and “grafting from” techniques for preparing PS brushes on silica. Relative rates of RAFT polymerization and click reaction can be altered to control grafting density.

  相似文献   


4.
Laccase‐catalyzed oxidative polymerization of phenol and its derivatives has been performed in aqueous organic solvents at room temperature in air. Laccase derived from Pycnoporus coccineus efficiently induced the polymerization to produce polyphenols consisting of a mixture of phenylene and oxyphenylene units. The unit ratio of the polymer could be precisely controlled by selection of the solvent and the monomer substituent.

  相似文献   


5.
A nickel α‐diimine catalyst was used for Grignard metathesis (GRIM) polymerization of 2,5‐dibromo 3‐hexylthiophene and 2‐bromo‐5‐iodo‐3‐hexylthiophene monomers. GRIM polymerization of 2‐bromo‐5‐iodo‐3‐hexylthiophene generated regioregular polymers with molecular weights ranging from 3 000 to 12 000 g · mol−1. The nickel α‐diimine catalyst was also successfully used for the GRIM polymerization of a bulky benzodithiophene monomer.

  相似文献   


6.
In the presence of an oligomeric hindered secondary amine added with peracetic acid as the oxidant, radical polymerization of styrene is fast and controlled at 110 °C. Under these experimental conditions, an oligomeric nitroxide is formed in situ. This polymerization is 2.5 faster than polymerization mediated by the alkoxyamine derivated from TIPNO (2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐nitroxide), which generates a low molar mass nitroxide. Similarly, substitution of a low molar mass secondary amine, 2,2,6,6‐tetramethylpiperidone (4‐oxo‐TMP), for the oligomeric secondary amine maintains the control on the polymerization, which is however 4.6 times slower, all the other conditions being the same. The in situ formation of the oligomeric nitroxide has been confirmed by electron spin resonance (ESR).

  相似文献   


7.
Submicron‐sized monodisperse polystyrene (PS) particles were successfully prepared by dispersion polymerization of styrene in an ionic liquid, N,N‐diethyl‐N‐methyl‐N‐(2‐methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide ([DEME][TFSI]) at 70 °C with poly(vinyl pyrrolidone) (PVP) as a stabilizer. At the optimum PVP and styrene concentrations with regard to preparation of stable polymer particles, the number‐average diameter and coefficient of variation were 350 nm and 5.7%, respectively. The particle size increased with a decrease in the PVP concentration and an increase in the styrene concentration. Moreover, we succeeded in producing PS particles by thermal polymerization in the absence of a radical initiator at 130 °C in [DEME][TFSI] using a conventional reactor (not autoclave) utilizing the advantages of non‐volatility and thermal stability of the ionic liquid.

  相似文献   


8.
Well‐controlled radical polymerization of methyl methacrylate can be achieved by in situ photochemical generation of copper (I) complex from air‐stable copper (II) species without using any reducing agent at room temperature. The living character of this polymerization was confirmed by both the linear tendency of molecular weight evolution with conversion and a chain extension experiment.

  相似文献   


9.
Summary: The grafting of poly(ethylene oxide) (PEO) onto silica nanoparticles was performed in situ by the ring‐opening polymerization of the oxirane monomer initiated from the mineral surface using aluminium isopropoxide as an initiator/heterogeneous catalyst. Alcohol groups were first introduced onto silica by reacting the surfacic silanols with prehydrolyzed 3‐glycidoxypropyl trimethoxysilane. The alcohol‐grafted silica played the role of a coinitiator/chain‐transfer agent in the polymerization reaction and enabled the formation of irreversibly bonded polymer chains. Silica nanoparticles containing up to 40 wt.‐% of a hairy layer of grafted PEO chains were successfully produced by this technique.

The grafting of poly(ethylene oxide) (PEO) onto silica nanoparticles by in‐situ ring‐opening polymerization of the oxirane monomer.  相似文献   


10.
Summary: Copolymerizations of St and NIPAM have been carried out through interfacial‐initiated microemulsion polymerization in a frozen state. FT‐IR and NMR spectroscopies confirm the occurrence of copolymerization between the two monomers. DSC analysis shows the existence of two glass transition temperatures of the resultant copolymers. The micellization of the copolymers is investigated by DLS and the temperature‐responsive behavior of the resultant micelles is observed. DSC and DLS results reveal the block feature of the obtained copolymers. Thus amphiphilic poly(styrene‐blockN‐isopropylacrylamide) is prepared by a one‐step interfacial‐initiated microemulsion polymerization.

Hydrodynamic radius of the micellar particles formed by (left), and a typical DSC trace of (right), the poly(styrene‐blockN‐isopropylacrylamide) prepared here.  相似文献   


11.
A series of organic‐inorganic hybrid particles were synthesized by a self‐assembled layer of different initiators, immobilized on silica particles and used for controlled radical polymerization. We use three different initiator systems for atom‐transfer radical polymerization (ATRP), unimolecular nitroxide mediated polymerization (NMP), and bimolecular NMP, for the development of the hybrid inorganic/organic particles. After preliminary qualitative characterization by X‐ray spectroscopy (XPS) and Fourier‐transformed infrared (FT‐IR) measurements, the hybrid nanoparticles were studied by thermogravimetric analysis (TGA) to determine and discuss the initiator graft density in terms of steric hindrance.

The coupling agents employed for the various approaches used here: a) NMP1‐bimolecular system, b) NMP2‐unimolecular system, and c) ATRP.  相似文献   


12.
13.
One‐dimensional methyl orange fibrils can be easily prepared. They are stable in acidic aqueous solutions and soluble in neutral water. When used to synthesize conducting polymer microtubules, the fibrils act as “hard templates” formally but as “soft templates” effectively. Microtubular structures of polypyrrole, polyaniline, and poly(3,4‐ethylenedioxythiophene) have been achieved successfully via such water‐soluble versatile templates.

  相似文献   


14.
The mechanistic interpretation of kinetic anomalies in reversible addition–fragmentation chain transfer (RAFT)‐mediated polymerization is critically reviewed. The main conclusion of this exercise is that available data do not allow model discrimination between the two prevailing mechanistic schemes, i.e., the slow fragmentation model and the intermediate radical termination model. However, assessment of the rate parameters reveals that the incompatibilities may not be as large as previously reported in literature. Dedicated kinetic studies on model compounds should be performed to shed further light on the seemingly incompatible data that currently exists in literature.

  相似文献   


15.
The synthesis of cationic mono‐(6‐O‐(1‐vinylimidazolium))‐ß‐cyclodextrin with toluenesulfonate as the corresponding anion is described. Free‐radical copolymerization of the resulting host–guest complex with N‐isopropylacrylamide or N,N‐diethylacrylamide yielded copolymers showing a temperature‐controlled solubility window in water. The impact of different anionic guests and salt concentrations on solubility behavior was investigated via turbidity measurements.

  相似文献   


16.
Summary: RAFT is applied to the dendronized macromonomers of the first and second generation, 1 and 2 , respectively. Good results are obtained in the presence of AIBN as radical initiator, with compound 6 as mediator and at mediator to monomer ratios of 2:200 for monomer 1 ( = 320 000, PDI = 1.24) and monomer 2 ( = 178 000, PDI = 1.20). The common characteristics of a controlled polymerization are reasonably met. The more sterically demanding G2 monomer 2 requires higher polymerization temperatures.

  相似文献   


17.
The preparation of hairy core–shell nanoparticles including (crosslinked) micelles, unimolecular micelles such as star polymers with block structures in each arm and surface grafted nanoparticles such as inorganic particles via the RAFT process are discussed. The RAFT process is certainly a highly versatile process. However, it should not be forgotten that RAFT polymerization is a process, i.e., superimposed on a conventional free radical process. Furthermore, the livingness of the process is dependent on the accessibility of the RAFT group, which can be hampered in certain approaches such as star synthesis and surface grafting from nanoparticles. Nevertheless, the RAFT process is a versatile toolbox that offers good solutions to a range of problems in the preparation of hairy nanoparticles.

  相似文献   


18.
In acrylate polymerizations both SPRs and tertiary MCRs occur. Via pulsed laser polymerization, using a wide range of LPRRs, in conjunction with aqueous‐phase size‐exclusion chromatography, the polymerization of 1.35 mol · L−1 acrylic acid in aqueous solution has been investigated at 6 °C. The sigmoidal decrease in the apparent propagation rate coefficient, k, towards lower LPRRs is in line with recent predictions. At the highest LPRRs, k approaches the rate coefficient of SPR propagation, k, whereas the limiting value of k at low LPRRs approaches the effective propagation rate coefficient, k, which allows for an estimate of the fraction of MCRs under polymerization conditions, xMCR.

  相似文献   


19.
A novel fluorescent nanoparticle with reversible on‐off switching properties has been synthesized. Three different wavelengths of light are used for switching‐on light, switching‐off light and excitation light, respectively. Thus, when this particle is used as a fluorescent probe by irradiation of the excitation light, the on‐off status can be maintained. We also showed that the on‐off status of the fluorescent particle even embedded in hydrogels can be remotely controlled by using two different wavelengths of light. These results promise that this kind of fluorescent particles will introduce a new concept and it will possibly be applied as a novel fluorescent probe, a photo memory, and a switching devise for photonics.

  相似文献   


20.
RAFT inverse miniemulsion polymerization is demonstrated for the first time as an alternate way to synthesize hydrophilic polymer latexes. The kinetic behavior of inverse RAFT miniemulsion polymerization of acrylamide is similar to that observed in aqueous RAFT solution polymerization. A water‐soluble initiator provides better control than a lipophilic initiator in inverse RAFT miniemulsion polymerization under the conditions used here.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号