首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ω‐Telechelic poly(p‐phenylene vinylene) species (PPVs) are prepared by living ring‐opening metathesis polymerization of a [2.2]paracyclophane‐1,9‐diene in the presence of Hoveyda–Grubbs 2nd generation initiator, with terminating agents based on N1,N3‐bis(6‐butyramidopyridin‐2‐yl)‐5‐hydroxyisophthalamide (Hamilton wedge), cyanuric acid, PdII–SCS‐pincer, or pyridine moieties installing the supramolecular motifs. The resultant telechelic polymers are self‐assembled into supramolecular block copolymers (BCPs) via metal coordination or hydrogen bonding and analyzed by 1H NMR spectroscopy. The optical properties are examined, whereby individual PPVs exhibit similar properties regardless of the nature of the end group. Upon self‐assembly, different behaviors emerge: the hydrogen‐bonding BCP behaves similarly to the parent PPVs whereas the metallosupramolecular BCP demonstrates a hypsochromic shift and a more intense emission owing to the suppression of aggregation. These results demonstrate that directional self‐assembly can be a facile method to construct BCPs with semiconducting networks, while combating solubility and aggregation.  相似文献   

2.
This communication describes photoresponsive gels, prepared using ring‐opening metathesis polymerization (ROMP), that dissolve upon irradiation with ultraviolet light. Exposure of mixtures of norbornene‐type ROMP monomers and new photoreactive cross‐linkers comprising two norbornene units bound through a chain containing o‐nitrobenzyl esters (NBEs) to well‐known ruthenium carbene catalysts gave cross‐linked polymer networks that swelled in organic solvents or water depending on the structure of the monomer. These gels became homogeneous upon irradiation with UV light, consistent with breaking of the cross‐links through photolysis of the NBE groups. The irradiation time required for homogenization of the gels depended on the cross‐link density and the structure of the photoresponsive cross‐linker.

  相似文献   


3.
The accomplishments in the copolymerization of ethylene with cyclic olefins such as norborn‐2‐ene or cis‐cyclooctene via tandem ring‐opening metathesis polymerization (ROMP) – vinyl insertion polymerization (VIP) are outlined. This approach provides polyolefins with high molecular weight (600,000 < Mn < 4,500,000 g mol−1) and substantial amounts of double bonds along the polymer main chain. Olefinic moieties in ROMP‐derived polymers can be converted into hydroxyl, amino, silyl, ester, or carboxylate groups by different means including controlled radical polymerization‐based grafting. The underlying concept for the switch in polymerization mechanism, the resulting pre‐catalyst requirements, limitations and challenges and the chemistry developed for functionalizing unsaturated polymers are outlined in detail.

  相似文献   


4.
Eight new N‐Hoveyda‐type complexes were synthesized in yields of 67–92 % through reaction of [RuCl2(NHC)(Ind)(py)] (NHC=1,3‐bis(2,4,6‐trimethylphenylimidazolin)‐2‐ylidene (SIMes) or 1,3‐bis(2,6‐diisopropylphenylimidazolin)‐2‐ylidene (SIPr), Ind=3‐phenylindenylid‐1‐ene, py=pyridine) with various 1‐ or 1,2‐substituted ferrocene compounds with vinyl and amine or imine substituents. The redox potentials of the respective complexes were determined; in all complexes an iron‐centered oxidation reaction occurs at potentials close to E=+0.5 V. The crystal structures of the reduced and of the respective oxidized Hoveyda‐type complexes were determined and show that the oxidation of the ferrocene unit has little effect on the ruthenium environment. Two of the eight new complexes were found to be switchable catalysts, in that the reduced form is inactive in the ring‐opening metathesis polymerization of cis‐cyclooctene (COE), whereas the oxidized complexes produce polyCOE. The other complexes are not switchable catalysts and are either inactive or active in both reduced and oxidized states.  相似文献   

5.
Monolithic materials were prepared via electron‐beam curing from ethyl methacrylate, trimethylolpropane triacrylate, and norborn‐5‐ene‐2‐ylmethyl acrylate. Reaction of the norborn‐2‐ene groups with either RuCl2(PCy3)2(CHPh) ( 1 ) or RuCl2(PCy3)(1,3‐dimesityl‐4,5‐dihydroimidazol‐2‐inylidene)(CHPh) ( 2 ) resulted in the surface attachment of the initiators. The extent of initiator immobilization was found to be substantially higher for 1 than for 2 . Reaction of the surface immobilized initiators with various monomers resulted in the desired surface modification of EB‐derived monoliths. The amounts of grafted monomer were determined by elemental analysis and ICP‐OES.

  相似文献   


6.
Water‐soluble and amphiphilic polymers are of great interest to industry and academia, as they can be used in applications such as biomaterials and drug delivery. Whilst ring‐opening metathesis polymerization (ROMP) is a fast and functional group tolerant methodology for the synthesis of a wide range of polymers, its full potential for the synthesis of water‐soluble polymers has yet to be realized. To address this, we report a general strategy for the synthesis of block copolymers in aqueous milieu using a commercially available ROMP catalyst and a macroinitiator approach. This allows for excellent control in the preparation of block copolymers in water. If the second monomer is chosen such that it forms a water‐insoluble polymer, polymerization‐induced self‐assembly (PISA) occurs and a variety of self‐assembled nano‐object morphologies can be accessed.  相似文献   

7.
8.
冯雨晨  介素云  李伯耿 《化学进展》2015,27(8):1074-1086
遥爪聚合物因其聚合物链的两端带有反应性官能团,可用于制备嵌段、接枝、星形、超支化等具有特殊结构的聚合物,其制备方法主要包括传统自由基聚合与可控/“活性”自由基聚合、阴离子聚合、阳离子聚合、易位聚合和缩合聚合等。相比于其他的传统聚合方法,烯烃易位聚合是一种较为温和的、产物分子量及结构可控的聚合方法。本文主要概述在各种链转移剂的存在下,采用环烯烃的开环易位聚合(ring-opening metathesis polymerization, ROMP)和非环二烯易位(acyclic diene metathesis, ADMET)聚合制备带有各种官能团的遥爪聚合物以及与其他活性聚合方法(NMRP、ATRP、RAFT、ROP等)相结合制备嵌段共聚物的研究进展。  相似文献   

9.
Using a one‐step synthetic route for block copolymers avoids the repeated addition of monomers to the polymerization mixture, which can easily lead to contamination and, therefore, to the unwanted termination of chain growth. For this purpose, monomers ( M1 – M5 ) with different steric hindrances and different propagation rates are explored. Copolymerization of M1 (propagating rapidly) with M2 (propagating slowly), M1 with M3 (propagating extremely slowly) and M4 (propagating rapidly) with M5 (propagating slowly) yielded diblock‐like copolymers using Grubbs’ first ( G1 ) or third generation catalyst ( G3 ). The monomer consumption was followed by 1H NMR spectroscopy, which revealed vastly different reactivity ratios for M1 and M2 . In the case of M1 and M3 , we observed the highest difference in reactivity ratios (r1=324 and r2=0.003) ever reported for a copolymerization method. A triblock‐like copolymer was also synthesized using G3 by first allowing the consumption of the mixture of M1 and M2 and then adding M1 again. In addition, in order to measure the fast reaction rates of the G3 catalyst with M1 , we report a novel retardation technique based on an unusual reversible G3 Fischer‐carbene to G3 benzylidene/alkylidene transformation.  相似文献   

10.
A series of pentavalent tantalum and niobium complexes with aryloxy ligands was prepared, and their catalytic behavior for the ROMP of norbornene was studied in the presence of an alkylaluminum cocatalyst. Tantalum complexes 1 – 4 showed very high activity for the ROMP of NBE in combination with iBu3Al to give high‐molecular‐weight polymers. In contrast, the niobium complexes 5 and 6 , as well as NbCl5, exhibited very high activity upon activation with Me3Al to give high‐molecular‐weight polymers.

  相似文献   


11.
Ring‐opening metathesis polymerization of 4‐phenylcyclopentene is investigated for the first time under various conditions. Thermodynamic analysis reveals a polymerization enthalpy and entropy sufficient for high molar mass and conversions at lower temperatures. In one example, neat polymerization using Hoveyda–Grubbs second generation catalyst at −15 °C yields 81% conversion to poly(4‐phenylcyclopentene) (P4PCP) with a number average molar mass of 151 kg mol−1 and dispersity of 1.77. Quantitative homogeneous hydrogenation of P4PCP results in a precision ethylene‐styrene copolymer (H2‐P4PCP) with a phenyl branch at every fifth carbon along the backbone. This equates to a perfectly alternating trimethylene‐styrene sequence with 71.2% w/w styrene content that is inaccessible through molecular catalyst copolymerization strategies. Differential scanning calorimetry confirms P4PCP and H2‐P4PCP are amorphous materials with similar glass transition temperatures (Tg) of 17 ± 2 °C. Both materials present well‐defined styrenic analogs for application in specialty materials or composites where lower softening temperatures may be desired.

  相似文献   


12.
Monolithic polymeric materials are prepared via ring‐opening metathesis copolymerization of norborn‐2‐ene with 1,4,4a,5,8,8a‐hexahydro‐1,4,5,8‐exo,endo‐dimethanonaphthalene in the presence of macro‐ and microporogens, that is, of n‐hexane and 1,2‐dichloroethane, using the Schrock catalyst Mo(N‐2,6‐(2‐Pr)2‐C6H3)(CHCMe2Ph)(OCMe3)2. Functionalization of the monolithic materials is accomplished by either terminating the living metal alkylidenes with various functional aldehydes or by post‐synthesis grafting with norborn‐5‐en‐2‐ylmethyl‐4‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)benzoate. Finally, boronate‐grafted monolithic columns (100 × 3 mm i.d.) are successfully applied to the affinity chromatographic separation of cis‐diol‐based biomolecules.  相似文献   

13.
Well‐defined amphiphilic block‐graft copolymers PCL‐b‐[DTC‐co‐(MTC‐mPEG)] with polyethylene glycol methyl ether pendant chains were designed and synthesized. First, monohydroxyl‐terminated macroinitiators PCL‐OH were prepared. Then, ring‐opening copolymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and cyclic carbonate‐terminated PEG (MTC‐mPEG) macromonomer was carried out in the presence of the macroinitiator in bulk to give the target copolymers. All the polymers were characterized by 1H NMR and gel permeation chromatography (GPC). The polymers have unimodal molecular weight distributions and moderate polydispersity indexes. The amphiphilic block‐graft copolymers self‐assemble in water forming stable micelle solutions with a narrow size distribution.

  相似文献   


14.
Using a one-step synthetic route for block copolymers avoids the repeated addition of monomers to the polymerization mixture, which can easily lead to contamination and, therefore, to the unwanted termination of chain growth. For this purpose, monomers ( M1 – M5 ) with different steric hindrances and different propagation rates are explored. Copolymerization of M1 (propagating rapidly) with M2 (propagating slowly), M1 with M3 (propagating extremely slowly) and M4 (propagating rapidly) with M5 (propagating slowly) yielded diblock-like copolymers using Grubbs’ first ( G1 ) or third generation catalyst ( G3 ). The monomer consumption was followed by 1H NMR spectroscopy, which revealed vastly different reactivity ratios for M1 and M2 . In the case of M1 and M3 , we observed the highest difference in reactivity ratios (r1=324 and r2=0.003) ever reported for a copolymerization method. A triblock-like copolymer was also synthesized using G3 by first allowing the consumption of the mixture of M1 and M2 and then adding M1 again. In addition, in order to measure the fast reaction rates of the G3 catalyst with M1 , we report a novel retardation technique based on an unusual reversible G3 Fischer-carbene to G3 benzylidene/alkylidene transformation.  相似文献   

15.
Photo‐redox mediated ring‐opening metathesis polymerization (photo‐ROMP) is an emerging ROMP technique that uses an organic redox mediator and a vinyl ether initiator, in contrast to metal‐based initiators traditionally used in ROMP. The reversibility of the redox‐mediated initiation and propagation steps enable spatiotemporal control over the polymerization. Herein, we explore a simple, inexpensive means of controlling molecular weight, using alpha olefins as chain transfer agents. This method enables access to low molecular weight oligomers, and molecular weights between 1 and 30 kDa can be targeted simply by altering the stoichiometry of the reaction. This method of molecular weight control was then used to synthesize a functionalized norbornene copolymer in a range of molecular weights for specific materials applications.  相似文献   

16.
17.
18.
N‐Carboxyanhydride ring‐opening polymerization (NCA ROP) is a synthetically straightforward methodology to generate homopolypeptides. Extensive control over the polymerization permits the production of highly monodisperse synthetic polypeptides to a targeted molecular weight in the absence of unfavorable side reactions. Sequential NCA ROP permits the creation of block copolypeptides composed of individual polypeptide blocks boasting different functionalities, secondary structures, and desirable chemical properties. Consequently, a plethora of novel materials have been generated that have found wide‐range applicability. This review offers an insight into contemporary synthetic approaches toward NCA ROP before highlighting a number of block copolypeptide architectures generated.  相似文献   

19.
This article describes the formation and characterization of self‐assembled nanoparticles of controlled sizes based on amphiphilic block copolymers synthesized by ring‐opening metathesis polymerization. We synthesized a novel hydrophobic derivative of norbornene; this monomer could be polymerized using Grubbs' catalyst [Cl2Ru(CHPh)(PCy3)2] forming polymers of controlled molecular weight. We synthesized amphiphilic block copolymers of controlled composition and showed that they assemble into nanoparticles of controlled size. The nanoparticles were characterized using dynamic light scattering and transmission electron microscopy. Tuning the composition of the block copolymer enables the tuning of the diameters of the nanoparticles in the 30‐ to 80‐nm range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3352–3359, 2004  相似文献   

20.
The synthesis and characterization of a series of poly(oxanorbornene)‐based synthetic mimics of antimicrobial peptides (SMAMPs) is presented. In the first part, the effect of different organic counterions on the antimicrobial properties of the SMAMPs was investigated. Unexpectedly, adding hydrophobicity by complete anion exchange did not increase the SMAMPs’ antimicrobial activity. It was found by dye‐leakage studies that this was due to the loss of membrane activity of these polymers caused by the formation of tight ion pairs between the organic counterions and the polymer backbone. In the second part, the effect of molecular charge density on the biological properties of a SMAMP was investigated. The results suggest that, above a certain charge threshold, neither minimum inhibitory concentration (MIC90) nor hemolytic activity (HC50) is greatly affected by adding more cationic groups to the molecule. A SMAMP with an MIC90 of 4 μg mL?1 against Staphylococcus aureus and a selectivity (=HC50/MIC90) of 650 was discovered, the most selective SMAMP to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号