首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Raman and infrared spectra of fac ‐tris(2‐phenylpyridinato‐N,C2′)iridium(III), Ir(ppy)3 and surface‐enhanced resonance Raman spectra of bis(2‐phenyl pyridinato‐) (2,2′bipyridine) iridium (III), [Ir(ppy)2 (bpy)]+ cation were recorded in the wavenumber range 150–1700 cm−1, and complete vibrational analyses of Ir(ppy)3 and [Ir(ppy)2 (bpy)]+ were performed. Most of the vibrational wavenumbers were calculated with density‐functional theory agree with experimental data. On the basis of the results of calculation and comparison of the spectra of both complexes and their analogue [Ru(bpy)3]2+, we assign the vibrational wavenumbers for metal–ligand modes; metal–ligand stretching wavenumbers are 277/307 and 261/236 cm−1 for Ir(ppy)3, and 311/324, 257/270, 199/245 cm−1 for [Ir(ppy)2 bpy]+. Surface‐enhanced Raman scattering spectra of [Ir(ppy)2 bpy]2+ were measured at two wavelengths on the red and blue edges of the low‐energy metal‐to‐ligand charge‐transfer band. According to the enhanced Raman intensities for the vibrational modes of both ligands ppy and bpy, the unresolved charge‐transfer band is deduced to consist of charge‐transfer transitions from the triplet metal to both ligands ppy and bpy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The pressure dependences of the peaks observed in the micro‐Raman spectra of Prussian blue (Fe4[Fe(CN)6]3), potassium ferricyanide (K3[Fe(CN)6]), and sodium nitroprusside (Na2[Fe(CN)5(NO)]·2H2O) have been measured up to 5.0 GPa. The vibrational modes of Prussian blue appearing at 201 and 365 cm−1 show negative dν/dP values and Grüneisen parameters and are assigned to the transverse bending modes of the Fe C N Fe linkage which can contribute to a negative thermal expansion behavior. A phase transition occurring between 2.0 and 2.8 GPa in potassium ferricyanide is shown by changes in the spectral region 150–700 cm−1. In the spectra of the nitroprusside ion, there are strong interactions between the FeN stretching mode and the FeNO bending and the axial CN stretching modes. The pressure dependence of the NO stretching vibration is positive, 5.6 cm−1 GPa−1, in contrast to the negative behavior in the iron(II)‐meso‐tetraphenyl porphyrinate complex. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
We recorded surface‐enhanced Raman scattering (SERS) spectra of metal‐string complexes Co3(dpa)4 Cl2 [di(2‐pyridyl)amido (dpa)], Ni3(dpa)4 Cl2 and the oxidized form of the Ni3 complex to determine their vibrational wavenumbers and to investigate their structures. For SERS measurements these complexes were adsorbed on silver nanoparticles in aqueous solution to eliminate the constraint of a crystal lattice and the complexes remain in thermal equilibrium. From our analysis of the vibrational normal modes we assigned the SERS lines at 242 and 276 cm−1 to Ni3 and Co3 symmetric‐stretching modes of the symmetric form. For Co3 (dpa)4Cl2 a Raman line at 383 cm−1 was assigned to the Co Co stretching mode of the unsymmetric form. The wavenumber of the Ni3 symmetric‐stretching mode of the oxidized form [Ni3(dpa)4]3+ is 274 cm−1, greater than that for neutral Ni3(dpa)4Cl2, in agreement with a prediction of delocalized molecular‐orbital theory that an electron is removed from an antibonding orbital after oxidation. The experimental data show that the SERS technique serves as an excellent tool to observe the variation of metal–metal bonding during an oxidation or reduction reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Raman and infrared spectra are reported for rhodanine, 3‐aminorhodanine and 3‐methylrhodanine in the solid state. Comparisons of the spectra of non‐deuterated/deuterated species facilitate discrimination of the bands associated with N H, NH2, CH2 and CH3 vibrations. DFT calculations of structures and vibrational spectra of isolated gas‐phase molecules, at the B3‐LYP/cc‐pVTZ and B3‐PW91/cc‐pVTZ level, enable normal coordinate analyses in terms of potential energy distributions for each vibrational normal mode. The cis amide I mode of rhodanine is associated with bands at ∼1713 and 1779 cm−1, whereas a Raman and IR band at ∼1457 cm−1 is assigned to the amide II mode. The thioamide II and III modes of rhodanine, 3‐aminorhodanine and 3‐methylrhodanine are observed at 1176 and 1066/1078; 1158 and 1044; 1107 and 984 cm−1 in the Raman and at 1187 and 1083; 1179 and 1074; 1116 and 983 cm−1 in the IR spectra, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The single‐crystal Raman spectra of minerals brandholzite and bottinoite, formula M[Sb(OH)6]2•6H2O, where M is Mg+2 and Ni+2, respectively, and the non‐aligned Raman spectrum of mopungite, formula Na[Sb(OH)6], are presented for the first time. The mixed metal minerals comprise alternating layers of [Sb(OH)6]−1 octahedra and mixed [M(H2O)6]+2/[Sb(OH)6]−1 octahedra. Mopungite comprises hydrogen‐bonded layers of [Sb(OH)6]−1 octahedra linked within the layer by Na+ ions. The spectra of the three minerals were dominated by the Sb O symmetric stretch of the [Sb(OH)6]−1 octahedron, which occurs at approximately 620 cm−1. The Raman spectrum of mopungite showed many similarities to spectra of the di‐octahedral minerals, supporting the view that the Sb octahedra give rise to most of the Raman bands observed, particularly below 1200 cm−1. Assignments have been proposed on the basis of the spectral comparison between the minerals, prior literature and density functional theory (DFT) calculations of the vibrational spectra of the free [Sb(OH)6]−1 and [M(H2O)6]+2 octahedra by a model chemistry of B3LYP/6‐31G(d) and lanl2dz for the Sb atom. The single‐crystal spectra showed good mode separation, allowing most of the bands to be assigned to the symmetry species A or E. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Ethyl carbamate (EC), a potentially toxic compound, is found in alcoholic beverages and fermented foodstuff. A combined experimental and theoretical study of Raman on EC is reported in this work for the first time. The Raman bands observed for EC in solid phase are characteristic for the carbonyl group, C―C, C―H and N―H stretching and deformation vibrations. These spectral features coupled with a pKa study allowed establishing the neutral species of EC present in the aqueous solutions experimentally tested at different concentrations. In addition, by performing a density functional theory study in the gas phase, the calculated geometry, the harmonic vibrational modes, and the Raman scattering activities of EC were found to be in good agreement with our experimental data and helped establish the surface‐enhanced Raman scattering (SERS) behavior and EC adsorption geometry on the silver surfaces. The Raman peak at 1006 cm−1, assigned to the υs(CC) + ω(CH) modes, the strongest and best reproducible peak in the SERS spectra, was used for a quantitative evaluation of EC. The limit of detection, which corresponds to a signal‐to‐noise ratio equal to 3, was found to be 2 × 10−7 M (17.8 µg l−1). SERS spectra obtained by using hydroxylamine hydrochloride‐reduced silver nanoparticles provide a fast and reproducible qualitative and quantitative determination of EC in aqueous solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Infrared spectra at 300 and 77 K and Raman spectra at 300 K of the valpromide (Vpd), N‐substituted derivatives, N‐ethylvalpromide (Etvpd), N‐isopropylvalpromide (Ipvpd) and the N,N‐disubstituted derivative, N,N‐dimethylvalpromide (Dmvpd) with antiepileptic activity, have been measured and analyzed with results derived from computational chemistry calculation. In agreement with theoretical predictions, experimental data indicate that while in Etvpd, Dmvpd and Ipvpd there are four different conformational co‐existing components (Etvpd: TTCG+, TCCG, TTTC, G+G+C G+; Dmvpd: TTCC, GTTA+, G+ATC, G+AC A+; Ipvpd: TTCT, TCCT, TCCC, G TTT) in the Vpd there are only three distinct stable conformations of C1 symmetry group: TTC, TCT, G+G+T. Based on the accuracy of the B3LYP calculation, with the 6‐31 + G** basis set estimated by comparison between the predicted values of the vibrational modes and the available experimental data, we performed a structural and vibrational study of the amide group in the Vpd and their derivatives. We found that small nonplanarity deviations of C(O)N backbone induce significant changes on the structural and spectroscopic properties. These are not compatible with the decreasing of the resonance effect as it is produced when the twisting around the C(O) N increases. From the Natural Bond Orbital (NBO) analysis the existence of stabilizing electrostatic interactions of type C H···O/N and C H···H N/C, which induce significant structural changes and a complex electronic redistribution of charge on the π‐system in those structures becomes evident. We view this as a consequence of the filled electron density change Lewis‐type NBOs type lpO1, 2, lpN1, σ(C H)N acyl and empty non‐Lewis NBOs type σ*(C H)N acyl, σ*N H. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Raman and infrared spectroscopy enabled insights into the molecular structure of the sampleite group of minerals. These minerals are based upon the incorporation of either phosphate or arsenate with chloride anion into the structure, and as a consequence the spectra reflect the bands attributable to these anions, namely, phosphate or arsenate with chloride. The sampleite vibrational spectrum reflects the spectrum of the phosphate anion and consists of ν1 at 964 cm−1, ν2 at 451 cm−1, ν3 at 1016 and 1088 cm−1 and ν4 at 643, 604, 591 and 557 cm−1. The lavendulan spectrum consists of ν1 at 854 cm−1, ν2 at 345 cm−1, ν3 at 878 cm−1 and ν4 at 545 cm−1. The Raman spectrum of lemanskiite is different from that of lavendulan consistent with a different structure. Low wavenumber bands at 227 and 210 cm−1 may be assigned to CuCl transverse/longitudinal (TO/LO) optic vibrations. Raman spectroscopy identified the substitution of arsenate by phosphate in zdenekite and lavendulan. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Raman spectroscopy has been used to study the arsenate minerals haidingerite Ca(AsO3OH)·H2O and brassite Mg(AsO3OH)·4H2O. Intense Raman bands in the haidingerite spectrum observed at 745 and 855 cm−1 are assigned to the (AsO3OH)2−ν3 antisymmetric stretching and ν1 symmetric stretching vibrational modes. For brassite, two similarly assigned intense bands are found at 809 and 862 cm−1. The observation of multiple Raman bands in the (AsO3OH)2− stretching and bending regions suggests that the arsenate tetrahedrons in the crystal structures of both minerals studied are strongly distorted. Broad Raman bands observed at 2842 cm−1 for haidingerite and 3035 cm−1 for brassite indicate strong hydrogen bonding of water molecules in the structure of these minerals. OH···O hydrogen‐bond lengths were calculated from the Raman spectra based on empirical relations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Vibrational spectra recorded by coherent anti-Stokes resonance Raman scattering (CARS) from bacteriorhodopsin (BR) samples containing isotopically substituted (2H and 13C) retinal chromophores were measured using high repetition rate, low-power, picosecond pulsed excitation (λ1=580 nm and λs=640±3 nm). These picosecond resonance CARS (PR/CARS) data were analyzed via third-order susceptibility relationships [χ ( 3 ) ] to obtain band origins, bandwidths, relative intensities, and electronic phase factors assignable to all significant vibrational Raman features in the 1490–1700 cm−1 wavenumber region (the ethylenic stretching and C = N–H rocking or Schiff base modes). Isotopic substitution selectively places 2H at C15, 13C singly at the C10 position and at the C14 position, and 13C simultaneously in positions of C14 and C15. Each isotopic BR sample was examined not only in H2O, but also in D2O, which places a 2H at the Schiff base nitrogen of the retinal. In addition, PR/CARS data were recorded from each isotopic BR sample following either light adaptation [i.e. the BR sample contained a single retinal isomer (all- trans , 15- anti or BR-570)] or dark adaptation [i.e. the BR sample contained a mixture of comparable amounts of retinal isomers (BR-570 and 13- cis , 15- syn or BR-548)]. Excellent agreement was found between the vibrational features observed by PR/CARS and those obtained from spontaneous resonance Raman measurements from the same isotopically substituted BR pigments. Several new vibrational features were also found from the PR/CARS data. Vibrational Raman data from three of the isotopic BR samples in D2O are reported for the first time.  相似文献   

11.
Mixed-ligand Cu(II) and Ni(II) complexes, [Cu(dmit)(bpy)]2 (I), [Ni(dmit)(phen)2] (II) and [Ni(dmit)(phen)2]·CH2Cl2 (III) (dmit=1.3-dithiole-2-thione-4.5-dithiolate, phen=1.10-phenantroline, bpy=2.2′-bipyridine) have been prepared by ligand exchange between phen or bpy and (Bu4N)2[M(dmit)2] (M=Ni, Cu) and characterized by elemental analysis, IR spectroscopy, single-crystal X-ray analysis and by investigation of magnetic and resonance properties. In complex I, the monomeric units form dimers in a head-to-tail arrangement by weak coordination bonds between copper and dithiolate sulfur atoms and π–π interactions between dmit and bpy from neighboring monomers. Dimers in I are further extended into chains by weak Cu–S(thione) contacts. In crystal packing of complex II and III, there exists a weak π–π interaction between two parallel phen molecules of the adjacent complexes. As a consequence, the magnetic and resonance characteristics of copper complex may be described in approximation of exchange-coupled pairs of Cu2+ ions with ion spin S=1/2. The nickel complexes are described by isotropic exchange model for single-site spin S=1.  相似文献   

12.
Raman spectroscopy has been used to study vanadates in the solid state. The molecular structure of the vanadate minerals vésigniéite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2·2H2O] have been studied by Raman spectroscopy and infrared spectroscopy. The spectra are related to the structure of the two minerals. The Raman spectrum of vésigniéite is characterized by two intense bands at 821 and 856 cm−1 assigned to ν1 (VO4)3− symmetric stretching modes. A series of infrared bands at 755, 787 and 899 cm−1 are assigned to the ν3 (VO4)3− antisymmetric stretching vibrational mode. Raman bands at 307 and 332 cm−1 and at 466 and 511 cm−1 are assigned to the ν2 and ν4 (VO4)3− bending modes. The Raman spectrum of volborthite is characterized by the strong band at 888 cm−1, assigned to the ν1 (VO3) symmetric stretching vibrations. Raman bands at 858 and 749 cm−1 are assigned to the ν3 (VO3) antisymmetric stretching vibrations; those at 814 cm−1 to the ν3 (VOV) antisymmetric vibrations; that at 508 cm−1 to the ν1 (VOV) symmetric stretching vibration and those at 442 and 476 cm−1 and 347 and 308 cm−1 to the ν4 (VO3) and ν2 (VO3) bending vibrations, respectively. The spectra of vésigniéite and volborthite are similar, especially in the region of skeletal vibrations, even though their crystal structures differ. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Raman spectra of the Cl3CCHO/CCl4 and Cl3CCHO/C6D12 binary systems were recorded as a function of the mole fraction. Features originating from self‐aggregates of chloral (trichloroethanal, trichloroacetaldehyde—TCAA) molecules were detected in different spectral regions. The most pronounced changes were observed in the vicinity of the ν(CO) and ν(C H) stretching vibration bands. Using two‐dimensional correlation spectroscopy (2D‐COS), evolving‐factor analysis (EFA) and multivariate curve resolution (MCR), dimer bands were identified, and their positions were determined. The ν(C H) stretching vibration band in dimers was blue‐shifted by nearly 18 cm−1, whereas the ν(CO) dimer band was red‐shifted by more than 5 cm−1. For these bands, the observed shifts were accompanied by an almost twofold change in the bandwidth, from approximately 19 and 6 cm−1 for dilute solutions (x = 0.05) to 36.6 and 11.5 cm−1, respectively, in pure TCAA. The formation of dimers was confirmed by multivariate analysis of the Raman spectra of chloral recorded as a function of temperature. Analogous analysis of dichloroacetyl chloride (DCAC) spectra gave an 8.9 cm−1 blue shift for the ν(C H) vibration band and − 5.5/− 10.1 cm−1 shifts for the ν(CO) stretching vibrations of the two conformers present. To facilitate the interpretation of experimental findings, the optimized geometries and vibrational wavenumbers of the Cl3CCHO/HCl2CCClO molecules and (Cl3CCHO)2/(HCl2CCClO)2 dimers were calculated at the B3LYP/6‐311 + + G(3df,3pd) level. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
We report on the infrared (IR) and Raman studies of the three isostructural quasi‐one‐dimensional cation radical salts of 3,4‐dimethyl‐tetrathiafulvalene (o‐DMTTF)2X (X = Cl, Br, and I), which all exhibit metallic properties at room temperature and undergo transitions to a semiconducting state in two steps: a soft metal‐to‐semiconductor regime change in the temperature region Tρ = 5–200 K and then a sharp phase transition at about TMI = 50 K. Polarized IR reflectance spectra (700–16 000 cm−1) and Raman spectra (50–3500 cm−1, excitation λ = 632.8 nm) of single crystals were measured as a function of temperature (T = 5–300 K) to assess the eventual formation of a charge‐ordered state below 50 K. Additionally, the temperature dependence of the IR absorption spectra of powdered crystals in KBr discs was also studied. The Raman spectra and especially the bands related to the CC stretching vibration of o‐DMTTF provide unambiguous evidence of uniform charge distribution on o‐DMTTF down to the lowest temperatures, without any modification below 50 K. However, the temperature dependence of Raman spectra indicates a regime change below about 200 K. Temperature dependence of both electronic dispersion and vibrational features observed in the IR spectra also clearly confirms the regime change below about 200 K and shows the involvement of C H···X hydrogen bonds in the electronic localization; some spectral changes can be also related with the phase transition at 50 K. Additionally, using density functional theory methods, the normal vibrational modes of the neutral o‐DMTTF0 and cationic o‐DMTTF+ species, as well as their theoretical IR and Raman spectra, were calculated. The theoretical data were compared with the experimental IR and Raman spectra of neutral o‐DMTTF molecule. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Y2Si2O7 is an intriguing material combining a complex structural polymorphism with several important technological applications. Raman spectra were experimentally determined for most of the seven known modifications of Y2Si2O7 except the form ε, and in the case of β, γ, δ and ζ for the first time. The error‐prone procedure of mode assignment to the measured Raman bands, usually done by comparison with similar or related structures, has been replaced by quantum chemical calculations of the spectra of the polymorphs. Various functionals were evaluated considering the agreement of the calculated modes with the experimental data. The average and maximum deviations between calculated and experimental spectra are ± 8 cm−1 and 20 cm−1, respectively. Assignments of most of the observed bands to vibrational modes are given. The relationship between selected Raman bands, Si O and Y O polyhedra stretching and bending modes, and the crystal structures are discussed. Y2Si2O7 offers the possibility to study the relationship between structural and spectral changes in a chemically fixed system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In this work, the Fourier transform infrared and Raman spectra of 2‐bromonicotinic acid and 6‐bromonicotinic acid (abbreviated as 2‐BrNA and 6‐BrNA, C6H4BrNO2) have been recorded in the region 4000–400 and 3500–50 cm−1. The optimum molecular geometry, normal mode wavenumbers, infrared intensities and Raman scattering activities, corresponding vibrational assignments and intermolecular hydrogen bonds were investigated with the help of B3LYP density functional theory (DFT) method using 6‐311++G(d,p) basis set. Reliable vibrational assignments were made on the basis of total energy distribution (TED) calculated with scaled quantum mechanical (SQM) method. From the calculations, the molecules are predicted to exist predominantly as the C1 conformer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The isotropic and anisotropic parts of the Raman spectra of NH2 bending and ν(CO) stretching modes of HCONH2 in a hydrogen‐bonding solvent, methanol, at different concentrations have been analyzed carefully in order to study the noncoincidence effect (NCE). In neat HCONH2, the experimentally measured values of noncoincidence Δνnc are ∼11 and ∼18 cm−1 for the NH2 bending and ν(CO) stretching modes, which reduce to 0.45 and 1.14 cm−1, respectively at the concentration of HCONH2 in mole fraction, χm = 0.1. The experimental results have been explained on the basis of two models, namely, the microscopic prediction of Logan and the macroscopic model of Mirone and Fini. The relative success of the two models in explaining the experimental data for both the modes have been discussed. It has been observed that in case of the ν(CO) stretching vibrational mode the Logan model can reproduce the experimental data rather precisely, whereas in the case of the NH2 bending mode, Mirone and Fini model yields more accurate results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Raman spectroscopy complemented with infrared spectroscopy has been used to study the rare‐earth‐based mineral decrespignyite [(Y,REE)4Cu(CO3)4Cl(OH)5· 2H2O] and the spectrum compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of decrespignyite displays three bands at 1056, 1070 and 1088 cm−1 attributed to the CO32− symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of the CO32− symmetric stretching vibration varies with the mineral composition. The Raman spectrum of decrespignyite shows bands at 1391, 1414, 1489 and 1547 cm−1, whereas the Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm−1, respectively, assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands are observed at 791, 815, 837 and 849 cm−1, which are assigned to the (CO3)2−ν2 bending modes. Raman bands are observed for decrespignyite at 694, 718 and 746 cm−1 and are assigned to the (CO3)2−ν4 bending modes. Raman bands are observed for the carbonate ν4 in‐phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite and 714 cm−1 for northupite. Multiple bands are observed in the OH stretching region for decrespignyite, bastnasite and parisite, indicating the presence of water and OH units in the mineral structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Infrared spectra of 1,2‐bis(trifluorosilyl)ethane (SiF3CH2CH2SiF3) were obtained in the vapour and liquid phases, in argon matrices and in the solid phase. Raman spectra of the compound as a liquid were recorded at various temperatures between 293 and 270 K and spectra of an apparently crystalline solid were observed. The spectra revealed the existence of two conformers (anti and gauche) in the vapour, liquid and in the matrix. When the vapour was chock‐frozen on a cold finger at 78 K and annealed to 150 K, certain weak Raman bands vanished in the crystal. The vibrational spectra of the crystal demonstrated mutual exclusion between IR and Raman bands in accordance with C2h symmetry. Intensity variations between 293 and 270 K of pairs of various Raman bands gave ΔH(gauche—anti) = 5.6 ± 0.5 kJ mol−1 in the liquid, suggesting 85% anti and 15% gauche in equilibrium at room temperature. Annealing experiments indicate that the anti conformer also has a lower energy in the argon matrices, is the low‐energy conformer in the liquid and is also present in the crystal. The spectra of both conformers have been interpreted, and 34 anti and 17 gauche bands were tentatively identified. Ab initio and density functional theory (DFT) calculations were performed giving optimized geometries, infrared and Raman intensities and anharmonic vibrational frequencies for both conformers. The conformational energy difference derived in CBS‐QB3 and in G3 calculations was 5 kJ mol−1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
用密度泛函理论B3LYP方法和6-311G(d,p)/Lanl2DZ优化得到黄曲霉素B1(AFB1)分子及其复合物AFB1-Ag的稳定结构,并计算了复合物的表面增强拉曼光谱和预共振拉曼光谱. 结果表明,AFB1分子的拉曼光谱很大程度依赖于吸附位点以及入射光的激发波长. 与分子的常规拉曼光谱相比,复合物表面增强拉曼光谱中C=O伸缩振动模的增强因子约为102~103复合物的极化率增强而导致的静态化学增强,并分析了振动模式的振动方向与其拉曼强度的关系.选择复合物最大吸收峰附近激发光266和482 nm以及远离共振吸收波长785和1064 nm作为入射光,计算得到不同入射光激发下复合物的预共振拉曼光谱.结果表明其增强因子最大达到104量级,主要是由电荷转移产生的共振增强引起的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号