首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deformation field near a steady fatigue crack includes a plastic zone in front of the crack tip and a plastic wake behind it, and the magnitude, distribution, and history of the residual strain along the crack path depend on the stress multiaxiality, material properties, and history of stress intensity factor and crack growth rate. An in situ, full-field, non-destructive measurement of lattice strain (which relies on the intergranular interactions of the inhomogeneous deformation fields in neighboring grains) by neutron diffraction techniques has been performed for the fatigue test of a Ni-based superalloy compact tension specimen. These microscopic grain level measurements provided unprecedented information on the fatigue growth mechanisms. A two-scale model is developed to predict the lattice strain evolution near fatigue crack tips in polycrystalline materials. An irreversible, hysteretic cohesive interface model is adopted to simulate a steady fatigue crack, which allows us to generate the stress/strain distribution and history near the fatigue crack tip. The continuum deformation history is used as inputs for the micromechanical analysis of lattice strain evolution using the slip-based crystal plasticity model, thus making a mechanistic connection between macro- and micro-strains. Predictions from perfect grain-boundary simulations exhibit the same lattice strain distributions as in neutron diffraction measurements, except for discrepancies near the crack tip within about one-tenth of the plastic zone size. By considering the intergranular damage, which leads to vanishing intergranular strains as damage proceeds, we find a significantly improved agreement between predicted and measured lattice strains inside the fatigue process zone. Consequently, the intergranular damage near fatigue crack tip is concluded to be responsible for fatigue crack growth.  相似文献   

2.
An anisotropic yield criterion for polycrystalline metals which uses texture data and takes advantage of crystal symmetries is presented. A linear transformation is developed to map an anisotropic yield surface for a polycrystal to an appropriate isotropic yield surface. The transformation developed reflects the symmetry of the material being modeled. First, the transformation is determined. Then, information regarding the orientation distribution (texture) of the crystals in a polycrystalline aggregate is used to determine, via averaging, the transformation for the polycrystal. The transformation, along with appropriate isotropic yield surface, provides a phenomenological approach to modeling yield, yet accounts for microstructural texture. The approach reduces to the Hill (1950) anisotropic plasticity theory under certain conditions. The yield surfaces and R-values for various face-centered-cubic ( fcc) polycrystalline textures are computed by this method. Results compare favorably with those given by other theories, and with experiment. The method proves to have the computational efficiency of phenomenological approaches to modeling yield, while effectively incorporating the physics of more complex crystallographic approaches.  相似文献   

3.
Modeling of scale-dependent characteristics of mechanical properties of metal polycrystals is studied using both discrete dislocation dynamics and continuum crystal plasticity. The initial movements of dislocation arc emitted from a Frank-Read type dislocation source and bounded by surrounding grain boundaries are examined by dislocation dynamics analyses system and we find the minimum resolved shear stress for the FR source to emit at least one closed loop. When the grain size is large enough compared to the size of FR source, the minimum resolved shear stress levels off to a certain value, but when the grain size is close to the size of the FR source, the minimum resolved shear stress shows a sharp increase. These results are modeled into the expression of the critical resolved shear stress of slip systems and continuum mechanics based crystal plasticity analyses of six-grained polycrystal models are made. Results of the crystal plasticity analyses show a distinct increase of macro- and microscopic yield stress for specimens with smaller mean grain diameter. Scale-dependent characteristics of the yield stress and its relation to some control parameters are discussed.  相似文献   

4.
In order to model the effects of grain boundaries in polycrystalline materials we have coupled a crystal-plasticity model for the grain interiors with a new elastic-plastic grain-boundary interface model which accounts for both reversible elastic, as well irreversible inelastic sliding-separation deformations at the grain boundaries prior to failure. We have used this new computational capability to study the deformation and fracture response of nanocrystalline nickel. The results from the simulations reflect the macroscopic experimentally observed tensile stress-strain curves, and the dominant microstructural fracture mechanisms in this material. The macroscopically observed nonlinearity in the stress-strain response is mainly due to the inelastic response of the grain boundaries. Plastic deformation in the interior of the grains prior to the formation of grain-boundary cracks was rarely observed. The stress concentrations at the tips of the distributed grain-boundary cracks, and at grain-boundary triple junctions, cause a limited amount of plastic deformation in the high-strength grain interiors. The competition of grain-boundary deformation with that in the grain interiors determines the observed macroscopic stress-strain response, and the overall ductility. In nanocrystalline nickel, the high-yield strength of the grain interiors and relatively weaker grain-boundary interfaces account for the low ductility of this material in tension.  相似文献   

5.
Deformation induced anisotropy in polycrystalline solids results mainly from crystallographic slip due to dislocation motion at the grain level and texture development due to grain rotation at the aggregate level. To describe these characteristics, the so-called scale invariance approach is adopted which allows information and constitutive relations pertaining to single slip to be cast in a form of macroscopic constitutive equations. An orientation distribution function (ODF) and a texture tensor are introduced into the earlier version (based on the hypotheses of single slip at the grain level and isotropic distribution of the crystallites at the aggregate level) of the scale invariance framework to describe texture effects in plastically deformed polycrystals. The texture tensor is calculated either directly through the solution of ODF, or indirectly through an appropriate set of evolution equations for the orientation tensors and the use of a closure approximation. Theoretical predictions for anisotropic yield and plastic flow behavior compare well with available experimental data.  相似文献   

6.
C.M. Sayers 《Wave Motion》1985,7(1):95-104
The scattering of ultrasound by minority phases in polycrystalline metals is discussed. For discrete inclusions, the scattering theory of Ying and Truell describes well the attenuation of longitudinal waves. To treat the scattering by a second phase formed by segregation at a grain boundary, the scattering by a spherical shell with density and elastic constants different from those of the surrounding medium is developed. Reflection of ultrasound at this boundary is found to enhance the attenuation at low frequencies in agreement with experiments of Kamigaki. Application is made to the scattering by manganese sulphide in free-machining steel.  相似文献   

7.
在金属晶体材料高应变率大应变变形过程中,存在强烈的位错胞尺寸等微观结构特征长度细化现象,势必对材料加工硬化、宏观塑性流动应力产生重要影响。基于宏观塑性流动应力与位错胞尺寸成反比关系,提出了一种新型的BCJ本构模型。利用位错胞尺寸参数,修正了BCJ模型的流动法则、内变量演化方程,引入了考虑应变率和温度相关性的位错胞尺寸演化方程,建立了综合考虑微观结构特征长度演化、位错累积与湮灭的内变量黏塑性本构模型。应用本文模型,对OFHC铜应变率在10-4~103 s-1、温度在298~542 K、应变在0~1的实验应力-应变数据进行了预测。结果表明:在较宽应变率、温度和应变范围内,本文模型的预测数据与实验吻合很好;与BCJ模型相比,对不同加载条件下实验数据的预测精度均有较大程度的提高,最大平均相对误差从9.939%减小为5.525%。  相似文献   

8.
A new methodology based on a conservation principle in the orientation space is developed to simulate the texture evolution in a cubic-orthotropic polycrystalline system. A least squares error method was used to improve the accuracy of the simulation results obtained from the texture evolution function. The model is applied to uniaxial tension, compression and rolling for a large deformation of more than 50% using a single evolution parameter. The validity and application range of this new model are discussed by simulating and predicting texture evolution during different loading conditions. The new methodology provides a family of texture evolution paths and streamlines which empowers the materials designer to optimize the desired microstructure.  相似文献   

9.
A theory of plasticity previously formulated by the author to discuss the free-end torsion problem has been extended to the more general case of combined axial-torsion of a thin-walled tube. This paper is devoted to the discussion of evolution of the yield surface due to different (proportional and non-proportional) loading paths with pre-strains in the large strain range. Experimental yield surfaces with axial and torsion pre-strains of magnitudes up to 40 and 45%, respectively, are presented, and theoretical results are compared with the experimental data.  相似文献   

10.
11.
An anisotropic elastic-plastic constitutive model for single and polycrystalline metals is proposed. The anisotropic hardening of single crystals, at first, is discussed with the viewpoint of yield surface and a new formulation of it is proposed. Then, a model for the anisotropic hardening of polycrystals is suggested by increasing the number of slip systems and incorporating the interaction of all slip systems. The interaction of grains through grain boundaries is shown to be similar to, and incorporated into, the interaction of slip systems in grains. The numerical predictions and their comparisons with experiments will follow in Part II of this paper.  相似文献   

12.
The presence of initial, and the development of induced, anisotropic elastic and inelastic material behavior in polycrystalline metals, can be traced back to the influence of texture and dislocation substructural development on this behavior. As it turns out, via homogenization or other means, one can formulate effective models for such structure and its effect on the macroscopic material behavior with the help of the concept of evolving structure tensors. From the constitutive point of view, these quantities determine the material symmetry properties. Most importantly, all dependent constitutive fields (e.g., stress) are by definition isotropic functions of the independent constitutive variables, which include these evolving structure tensors. The evolution of these tensors during loading results in an evolution of the anisotropy of the material. From an algorithmic point of view, the current approach leads to constitutive models which are quite amenable to numerical implementation. To demonstrate the applicability of the resulting constitutive formulation, we apply it to the case of metal plasticity with combined hardening involving both deformation- and permanently induced anisotropy. Comparison of simulation results based on this model for the bending tension of aluminum-alloy sheet-metal strips with corresponding experimental ones show good agreement.  相似文献   

13.
14.
Damage in heterogeneous model materials was measured using high-resolution X-ray absorption tomography. The material consisted of an aluminium matrix containing 1% and 4% of spherical ceramic particles acting as nucleation sites for an interface decohesion mechanism of damage. The damage initiation stage was quantified using the global population of particles in the 4% material. A strain path change experiment was then applied to the 1% material. The sample was first deformed in tension in order to create elongated cavities and then compressed at 45° to rotate and close these cavities. The results of a model based on the Rice and Tracey approach accounting for the presence of particles inside the cavities and calculating their rotation with assuming a linear hardening plastic behaviour of the matrix were compared with the observations. The model was modified to account for the damage initiation phase. It was shown to give a good global prediction of the void volume fraction provided that the physical, mechanical and morphological information are corresponding in the experimental and the model cases. The cavity rotation experiment was also shown to compare well with the calculation although only one cavity was sufficiently opened after compression to allow the comparison.  相似文献   

15.
Summary A yield criterion for elastic pure-plastic polycrystalline materials is generated under simplified conditions by assuming that for yielding a certain fraction Q c of the total number of slip planes in the material has to be active. This fraction Q c is called the critical active quantity. We suppose Q c to be independent of the state of stress. The yield criterion is mathematically expressed as an integral, which is a function of Q c. This criterion can also be used for anisotropic materials.For isotropic materials the ratio (r) of the yield stress in torsion to that in tension is calculated as a function of Q c. We find 0.5r0.61.The value r=0.5 (Tresca's criterion) is obtained for Q c=0 and Q c=1. The value r=0.577 (von Mises criterion) is obtained for Q c=0.34 and Q c=0.79. The difference between two criteria with the same r is the magnitude of the yield stress. We think the value Q c=0.79 corresponds to the experiments for f.c.c. materials, since a rough estimation gives Q c>0.75 for yielding.The independence of Q c on the state of stress brings on that r>0.5 is more probable. This is caused by the slower increase to Q c in torsion compared with the case of tension.From the theory follows that in the general case (Q c0) the middle principal stress has influence on yielding.In this paper we don't determine Q c, but adapt its value to the experimental results. However, a rough estimation of Q c is given for isotropic materials.  相似文献   

16.
ALINEARIZEDANDUNIFIEDYIELDCRITERIONOFMETALSANDITSAPPLICATIONXiongHui-er(熊慧而)(DepartmentofEngineeringMechanics,HunanUniversity...  相似文献   

17.
Tracer experiments are a valuable tool in the study of transport phenomena. Most of the theoretical work about tracers has been concerned either with systems having clearly defined inlet and outlet or with recirculating flows. In this article the methods are generalized to more complex situations and an attempt is made to provide a uniform theoretical treatment for local tracer experiments performed at several sites inside the flow systems. Local purging rate and mixing rate are defined and their measurements and applications are discussed. Several sojourn time distribution are discussed, especially that of local remaining life which might be useful in the study of local processes in large flow systems. The results should be of interest in a wide variety of areas in which tracer experiments are used, such as chemical reactor design, physiology, hydrology and the study of dispersion processes in the atmosphere and in oceans.  相似文献   

18.
Uniaxial tension tests have been carried out along different angles from the rolling direction for both as-received and pre-strained sheet. By comparing the differences in the flow stress vs. orientation curves between the as-received and pre-strained sheets, the effect of pre-straining on material anisotropy is studied. It is demonstrated that the conventional methodology for determining material anisotropy would overestimate the pre-straining effect and would result in a completely erroneous yield surface.  相似文献   

19.
This paper reports the experimental results on macroscopic deformation instability and domain morphology evolution during stress-induced austenite → martensite (A→M) phase transformation in superelastic NiTi polycrystalline shape memory alloy microtubes. High-speed data and image acquisition techniques were used to investigate the dynamic and quasi-static events which took place in a displacement-controlled quasi-static tensile loading/unloading process of the tube. These events include dynamic formation, self-merging, topology transition, convoluted front motion and front instability of a macroscopic deformation domain. The reported phenomena brought up several fundamental issues regarding the roles of macroscopic domain wall energy and kinetics as well as their interplay with the bulk strain energy of the tube in the observed morphology instability and pattern evolution under a mechanical force. These issues are believed to be essential elements in the theoretical modeling of macroscopic deformation patterns in polycrystals and need systematic examination in the future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号