首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface enhanced Raman scattering is studied in nanostructures with CdS quantum dots formed using the Langmuir-Blodgett technology. Features due to quantum dot longitudinal optical phonons are observed in the Raman spectra of both free CdS quantum dots and such dots distributed in an organic matrix. The surface enhanced Raman scattering by nanostructures with CdS quantum dots covered by an Ag cluster film is observed experimentally. Applying Ag clusters onto the nanostructure surfaces results in a sharp (40-fold) increase in the intensity of Raman scattering by optical phonons in the quantum dots. It is shown that the dependence of surface enhanced Raman scattering on the excitation energy is resonant with a maximum at the energy corresponding to the maximum absorption coefficient of Ag clusters.  相似文献   

2.
ZnO nanorods have been grown using ZnO seed layer onto ITO-coated glass substrates. CdS quantum dots have been deposited onto ZnO nanorods using simple precursors by chemical method and the assembly of CdS quantum dots with ZnO nanorod has been used as photo-electrode in quantum dot-sensitized solar cells. X-ray diffraction results show that ZnO seed layer, ZnO nanorods, and CdS quantum dot-sensitized ZnO nanorods exhibit hexagonal structure. The particle size of CdS nanoparticle is 5 nm. The surface morphology studied using scanning electron microscope shows that the top surface of the vertically aligned ZnO nanorods is fully covered by CdS quantum dots. The ZnO nanorods have diameter ranging from 100 to 200 nm. The absorption spectra reveal that the absorption edge of CdS quantum dot-sensitized ZnO nanorods shift toward longer wavelength side when compared to the absorption edge of ZnO. The efficiency of the fabricated CdS quantum dot-sensitized ZnO nanorod-based solar cell is 0.69% and is the best efficiency reported so far for this type of solar cells.  相似文献   

3.
Exciton energies as a function of radii of quantum dots in the range of 5-35 A are calculated based on effective mass approximation model with the B-spline technique and compared with experimental and other theoretical data for the CdS dots. This method leads to accurate and fast convergent exciton energy, which are in good agreement with experimental data in the whole confinement regime. The effect of penetration of wave function from the inside to the outside of the dots and the effect of dielectric constants are taken into account. The magnitudes of dynamical parameters are discussed. It is found that the different materials surrounding the CdS quantum dot affect not only the potential energy and Coulomb interaction energy of the system, but also the effective masses. The comparison shows that the effective mass approximation model can describe very well the quantum size effects observed experimentally on the exciton ground state energy.  相似文献   

4.
用Ti/sapphire飞秒激光系统产生的100fs、800nm激光对置于水中的CdS体相材料进行烧蚀,得到了水溶性CdS纳米粒子。这种纯物理过程保证了无污染的制备环境,从而保证了所合成材料的纯洁性。通过透射电子显微镜、紫外/可见/近红外吸收光谱、室温光致发光谱的方法对CdS量子点的形貌及其光学性质进行了表征。结果表明:利用飞秒激光烧蚀法所制备的CdS量子点可直接分散在水中而且具有粒径小、分布均匀的特点;同时具有较好的胶体稳定性,可在空气中稳定存放6个月以上。飞秒激光烧蚀法所制备的CdS量子点所具有的这些性质使其在生物标记领域引起极大的兴趣,而且也为纳米材料的制备提供了新的思路。  相似文献   

5.
The main line of research in cancer treatment is the development of methods for early diagnosis and targeted drug delivery to cancer cells. Fluorescent semiconductor core/shell nanocrystals of quantum dots (e.g., CdSe/ZnS) conjugated with an anticancer drug, e.g., an acridine derivative, allow real-time tracking and control of the process of the drug delivery to tumors. However, linking of acridine derivatives to a quantum dot can be accompanied by quantum dot fluorescence quenching caused by electron transfer from the quantum dot to the organic molecule. In this work, it has been shown that the structure of the shell of the quantum dot plays the decisive role in the process of photoinduced charge transfer from the quantum dot to the acridine ligand, which is responsible for fluorescence quenching. It has been shown that multicomponent ZnS/CdS/ZnS shells of CdSe cores of quantum dots, which have a relatively small thickness, make it possible to significantly suppress a decrease in the quantum yield of fluorescence of quantum dots as compared to both the classical ZnS thin shell and superthick shells of the same composition. Thus, core/multicomponent shell CdSe/ZnS/CdS/ZnS quantum dots can be used as optimal fluorescent probes for the development of systems for diagnosis and treatment of cancer with the use of anticancer compounds based on acridine derivatives.  相似文献   

6.
Using the spectral methods of induced absorption, luminescence, and photostimulated luminescence flash, we have experimentally investigated processes of decay of electronic excitations in CdS colloidal quantum dots and in CdS/ZnS “core-shell” systems synthesized in gelatin by the sol-gel method. It has been shown that the decay of electronic excitations in colloidal quantum dots of this type is predominantly related to a fast localization of nonequilibrium charge carriers on surface defects and their subsequent recombination during times on the order of units and tens of picoseconds. The passage to core-shell systems eliminates, to a large extent, surface defects of the core, some of which are luminescence centers. However, upon using the sol-gel synthesis, a noticeable fraction of luminescence centers are formed in the interior of the CdS quantum dot, which, as well as in the case of CdS/ZnS systems, ensures localization of exciton, blocks its direct annihilation, and maintains recombination radiation.  相似文献   

7.
The absorption of light in an ensemble of non-interacting cylindrical quantum dots in the presence of a magnetic field is discussed using a model consisting of dots with rectangular infinitely-high potential barriers. The ensemble’s absorption coefficient is calculated — as well as the threshold frequency of absorption — as a function of the applied magnetic field and the quantum dot size. Theoretical results are compared with experimental data on magneto-luminescence in an In0.53Ga0.47As/InP cylindrical quantum dot system. In addition, using a perturbation theory framework, the influence of excitonic effects on the behaviour of the electron-hole energetic spectrum of said system is discussed.  相似文献   

8.
A light emitting diode has been developed on the basis of multilayer nanostructures in which CdSe/CdS semiconductor colloidal quantum dots serve as emitters. Their absorption, photo-, and electroluminescence spectra have been obtained. The strong influence of the size effect and the density of particles in the layer on the spectral and electrophysical characteristics of the diode has been demonstrated. It has been shown that the rates of the transfer of the exciton excitation energy from organic molecules to quantum dots increase strongly even at a small increase in the radius of the core (CdSe) of a particle and depend strongly on the thickness of the shell (CdS) of the particle. The optimal arrangement of the layer of quantum dots with respect to the p-n junction has been estimated from the experimental data. The results demonstrate that the spectral characteristics and rates of the electron processes in light-emitting devices based on quantum dots incorporated into an organic matrix can be efficiently controlled.  相似文献   

9.
Electron–phonon effects on the two first electronic states in both CdS and GaAs quantum dots are investigated. Both confined longitudinal optical (LO) and surface optical (SO) phonons are considered. We use the intermediate-type variational approach. We find that, shifts caused by phonon contribution on electronic energies are more significant for CdS quantum dot. We find, also, that, contrary to GaAs based quantum dots, we shouldn’t neglect the SO phonon contribution for CdS based ones, especially for small dots.  相似文献   

10.
A model describing a plasmonic nanopatch antenna based on triangular silver nanoprisms and multilayer cadmium chalcogenide quantum dots is introduced. Electromagnetic-field distributions in nanopatch antennas with different orientations of the quantum-dot dipoles are calculated for the first time with the finite element method for numerical electrodynamics simulations. The energy flux through the surface of an emitting quantum dot is calculated for the configurations with the dot in free space, on an aluminum substrate, and in a nanopatch antenna. It is shown that the radiative part of the Purcell factor is as large as 1.7 × 102 The calculated photoluminescence lifetimes of a CdSe/CdS/ZnS colloidal quantum dot in a nanopatch antenna based on a silver nanoprism agree well with the experimental results.  相似文献   

11.
The density matrix approach has been employed to analyze the pump–probe spectroscopic absorption spectra of small semiconductor nanocrystals popularly known as quantum dots (QDs) under the strong confinement regime (SCR) with sizes smaller than the bulk exciton Bohr radius such that the Coulombic interaction energy becomes negligible in comparison with the confinement energy. The average time rate of absorption has been obtained by incorporating the radiative and nonradiative decay processes as well as the inhomogeneous broadening arising due to nonuniform QD sizes. The analytical results are obtained for QDs duly irradiated by a strong near-resonant pump and a broadband weak probe. Numerical estimations have been made for: (i) isolated QDs and (ii) QD-arrays of GaAs and CdS. The results agree very well with the available experimental observations in CdS QDs. The results in the case of GaAs QDs can lead one to experimentally estimate absorption/gain spectra in the important III–V semiconducting microscopic structures.  相似文献   

12.
We examined theoretically band structure and discrete dopant effects in the quantum well infrared photodetector (QWIP) and the quantum dot infrared photodetector (QDIP). We find that in QWIPs discrete dopant effects can induce long wavelength infrared absorption through impurity assisted intra-subband optical transitions. In QDIPs, we find that a strategically placed dopant atom in a quantum dot can easily destroy the symmetry and modify the selection rule. This mechanism could be partially responsible for normal incidence absorption observed in low-aspect-ratio quantum dots.  相似文献   

13.
Epitaxially grown self-assembled InAs quantum dots (QDs) have found applications in optoelectronics. Efforts are being made to obtain efficient quantum-dot lasers operating at longer telecommunication wavelengths, specifically 1.3 μm and 1.55 μm. This requires narrow emission linewidth from the quantum dots at these wavelengths. In InAs/GaAs single layer quantum dot (SQD) structure, higher InAs monolayer coverage for the QDs gives rise to larger dots emitting at longer wavelengths but results in inhomogeneous dot-size distribution. The bilayer quantum dot (BQD) can be used as an alternative to SQDs, which can emit at longer wavelengths (1.229 μm at 8 K) with significantly narrow linewidth (∼16.7 meV). Here, we compare the properties of single layer and bilayer quantum dots grown with higher InAs monolayer coverage. In the BQD structure, only the top QD layer is covered with increased (3.2 ML) InAs monolayer coverage. The emission line width of our BQD sample is found to be insensitive towards post growth treatments.  相似文献   

14.
We have investigated the temperature dependence of the photoluminescence (PL) spectrum of self-organized InAs/GaAs quantum dots. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy image for uncapped sample. The power-dependent PL study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. Due to lacking of the couple between quantum dots, an unusual temperature dependence of the linewidth and peak energy of the dot ensemble photoluminescence has not been observed. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 μm at room temperature.  相似文献   

15.
The impurity absorption of light in a quantum dot with a parabolic potential profile is considered within the framework of the model of a zero radius potential in the effective mass approximation. The sensitivity of the effect of position disorder to the size factor at the transition from a quantum well to a quantum dot is revealed. The spectral dependence of the coefficient of impurity absorption of light is investigated with account of the spread in size of quantum dots. It is shown that the account of spread in size results in smearing of discrete absorption lines. The impurity absorption edge depends on the parameters of quantum dots and the depth of the impurity level.  相似文献   

16.
We report on the temperature dependent lasing characteristics of InAs/GaAs quantum dot lasers under continuous wave mode. The five-stacked InAs quantum dots were grown by gas-source molecular beam epitaxy with slightly different thickness. Ridge waveguide laser with stripe width of 6 μm was processed on the growth structure. The characteristic temperature was measured as high as infinity in the temperature range of 80–180 k. With the increase of injection current, the lasing spectra of laser diode broaden gradually at low temperature of 80 k. However, when the operation temperature increases from 80 to 300 K, the width of lasing spectrum reduces gradually from 40 to 2.0 nm. The lasing process is obviously different from that of a reference quantum well laser which widens its width of lasing spectra by increasing operation temperature. These experiments demonstrate that a carrier transfer from the smaller size of dots into larger dots caused by thermal effect play an important role in the lasing characteristic of quantum dot lasers. In addition, the laser can operate at maximum temperature of 80 °C under continuous wave mode with a maximum output power of 52 mW from one facet at 20 °C. A wavelength thermal coefficient of 0.196 nm/K is obtained, which is 2.8 times lower than that of QW laser. The low wavelength thermal coefficient of quantum dot laser is mainly attributed to its broad gain profile and state filling effects.  相似文献   

17.
We report a detailed experimental and theoretical investigation on the photocurrent characteristics of nanocrystalline Si thin films, with the emphasis on the effect of Si dot size distribution. Broader photocurrent response has been observed in Si quantum dots with larger size dispersion due to the improvement of light harvest. As a result of tunneling loss in the expanded energy distribution, we have demonstrated that there is a tradeoff between the absorption enhancement and reduced transport for the photocurrent intensity. The present work opens new strategy to maximize the photoresponse through size distribution control for quantum dot solar cell application.  相似文献   

18.
A systematic variation of the exciton fine-structure splitting with quantum dot size in single quantum dots grown by metal-organic chemical vapor deposition is observed. The splitting increases from to as much as with quantum dot size. A change of sign is reported for small quantum dots. Model calculations within the framework of eight-band theory and the configuration interaction method were performed. Different sources for the fine-structure splitting are discussed, and piezoelectricity is pinpointed as the only effect reproducing the observed trend.  相似文献   

19.
采用激发波长800 nm、脉宽50 fs、重复频率1 kHz的Ti:sapphire放大飞秒激光器作为激发光源,利用开孔Z扫描技术研究了不同粒径的CdTe:Mn量子点的非线性吸收性质。理论计算结果表明,同一生长时间CdTe:Mn量子点的双光子吸收系数是CdTe量子点的1.1倍,其双光子吸收系数随量子点尺寸的减小而增大,这是由于CdTe:Mn量子点非线性吸收属于反饱和吸收,掺杂了Mn元素,减小了表面缺陷浓度,表明掺杂量子点具有很好的双光子吸收现象。  相似文献   

20.
The bilayer InAs/In0.36Ga0.64As/GaAs(311B) quantum dots (QDs), including one InAs buried quantum dot (BQD) layer and the other InAs surface quantum dot (SQD) layer, have been grown by molecular beam epitaxy (MBE). The optical properties of these three samples have been studied by the piezoreflectance (PzR) spectroscopy. The PzR spectra do not exhibit only the optical transitions originated from the InAs BQDs, but the features originated from the InAs SQDs. After the InAs SQDs have been removed chemically, those optical transitions from InAs SQDs have been demonstrated clearly by investigating the PzR spectra of the residual InAs BQDs in these samples. The great redshift of these interband transitions of InAs SQDs has been well discussed. Due to the suitable InAs SQD sizes and the thickness of In0.36Ga0.64As layer, the interband transition of InAs SQDs has been shifted to ∼1.55 μm at 77 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号