首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Herein we report an efficient one pot synthesis of new chiral 4,5‐dihydro‐4‐arylspiro[1,3,4‐thiadiazole]‐5,2′‐camphane‐2‐carboxylic acid ethyl esters 5–7 and 4,5‐dihydro‐3‐arylspiro[1,4,2‐oxathiazole]‐5,2′‐camphane 11–13 , using 1,3‐dipolar cycloaddition of nitrilimines 2–4 and nitrile oxides 8–10 to (1R)‐thiocamphor 1 respectively. The structure of the newly prepared 1,3,4‐thiadiazoles 5–7 (obtained as pure diastereoisomers) were fully established via spectroscopic analysis and X‐ray structural analysis which proved the absolute configuration of the C5 spiranic carbon to be (R). NMR spectral analysis were also very useful to show the new 1,4,2‐oxathiazoles 11–13 are mixtures of two (5R)/(5S) diastereoisomers with the ratio 6:4,7:3 and 6:4 respectively.  相似文献   

2.
The ribofuranosides, namely, 4‐amino‐5,7‐disubstituted‐1‐[2′,3′,5′‐tri‐O‐benzoyl‐α‐d ‐ribofuranosyl]pyrido‐[2,3‐d] pyrimidine‐2(1H)‐thiones, have been synthesized by the condensation of trimethylsilyl derivatives of 5,7‐disubstituted pyrido[2,3‐d]pyrimidine‐2(1H)‐thiones with β‐d ‐ribofuranose‐1‐acetate‐2,3,5‐tribenzoate in the presence of SnCl4. The heterocyclic bases, namely, 4‐amino‐5,7‐disubstituted pyrido[2,3‐d]pyrimidine‐2(1H)‐thiones, were synthesized by the treatment of 2‐amino‐3‐cyano‐4,6‐disubstituted pyridines with thiourea. The structures of all the synthesized ribofuranosides and their precursors have been established by elemental analysis, IR, and 1H NMR spectral data. The 13C NMR data of ribofuranosides has also been presented. All the synthesized heterocyclic bases and their ribofuranosides have been screened for their antibacterial and antifungal activities. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:52–56, 2001  相似文献   

3.
1‐[2′‐(Heptaphenylcyclotetrasiloxanyl)ethyl]‐1,3,3,5,5‐pentamethylcyclotetrasiloxane ( II ) was prepared from 1‐[2′‐(methyldichlorosilyl)ethyl]‐1,3,3,5,5,7,7‐heptaphenylcyclotetrasiloxane ( I ) and tetramethyldisiloxane‐1,3‐diol. Acid‐catalyzed ring‐opening of II in the presence of tetramethyldisiloxane gave 1,9‐dihydrido‐5‐[2′‐(heptaphenylcyclotetrasiloxanyl)ethyl]nonamethylpentasiloxane ( III ) and 1,9‐dihydrido‐3‐[2′‐(heptaphenylcyclotetrasiloxanyl)ethyl]nonamethylpentasiloxane ( IV ). Both acid‐ and base‐catalyzed ring‐opening polymerization of II gives highly viscous, transparent polymers. The structures of I – IV and polymers were determined by UV, IR, 1H, 13C, and 29Si NMR spectroscopy. In addition, molecular weights obtained by GPC and NMR end group analysis were confirmed with mass spectrometry. On the basis of 29Si NMR spectroscopy, the polymers appear to result exclusively from ring‐opening of the cyclotrisiloxane ring. No evidence for ring‐opening of the cyclotetrasiloxane ring was observed. Polymer properties were determined by DSC and TGA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 137–146, 2006  相似文献   

4.
The reaction of N‐methyl‐2,2′‐diphenolamine 1 and 2,2′‐diphenolamine 2 with some diorganotin(IV) oxides [R1/2SnO: R1 = Me, n‐Bu, t‐Bu and Ph] led to the syntheses of diorgano[N‐methyl‐2,2′‐diphenolato‐O,O′,N]tin (IV) 3–6 and diorgano[2,2′‐diphenolato‐O,O′,N]tin (IV) 7–9 . All compounds (except 7 ) studied in this work were characterized by 1H, 13C, 119Sn NMR, infrared, and mass spectroscopy. Their 119Sn NMR data show that the tin atom is tetracoordinated in CDCl3 but penta and hexacoordinated in DMSO‐d6. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 133–139, 1999  相似文献   

5.
Novel dental monomers containing both phosphonic and carboxylic acid functional groups were prepared. The monomers were based on t‐butyl α‐bromomethacrylate (t‐BuBMA) and synthesized in three steps: The reaction of o‐hydroxyaryl phosphonates [diethyl (2‐hydroxyphenyl) phosphonate, tetraethyl (2,5‐dihydroxy‐1,4‐phenylene) diphosphonate and tetraethyl 5,5′‐(propane‐2,2‐diyl)bis(2‐hydroxy‐5,1‐ phenylene) diphosphonate] with t‐BuBMA, the hydrolysis of phosphonate groups to phosphonic acid using trimethyl silylbromide, and the hydrolysis of the t‐butyl groups to carboxylic acid with trifluoroacetic acid. The monomers were solids and soluble in water and ethanol. The structures of the monomers were determined by Fourier transform infrared (FTIR), 1H, 13C, and 31P nuclear magnetic resonance (NMR) spectroscopy. The copolymerization behaviors of the synthesized monomers with glycerol dimethacrylate were first investigated in bulk using photodifferential scanning calorimetry at 40 °C with 2,2′‐dimethoxy‐2‐phenyl acetophenone as photoinitiator. Then, the solution copolymerization of the monomers with acrylamide in ethanol and water was studied, indicating that the synthesized monomers are incorporated into the copolymers. The acidic nature of the aqueous solutions of these monomers (pH values 1.72–1.87) is expected to give them etching properties important for dental applications. The interaction of the monomers with hydroxyapatite was investigated using 13C NMR and FTIR techniques. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1953–1965, 2009  相似文献   

6.
The new 1H‐pyrazole‐3‐carboxylic acid 2 , pyridazin‐3(2H)‐one 3 , and their various derivatives were prepared by the reactions of the 4‐benzoyl‐5‐phenyl‐2,3‐dihydro‐2,3‐furandione 1 and 2,5‐dichlorophenylhydrazine. Pyrazolo[3,4‐d]pyridazine 7 was obtained from cyclization of the pyrazole‐3‐carboxylic acid 2 with 2,5‐dichlorophenylhydrazine. The reaction of 1 and pyrazole‐3‐carbonitriles 6 gave the new oxazin‐4‐one 9 derivatives. The structures of compounds were characterized on the basis of elemental analyses, mass, IR, 1H, and 13C NMR spectra. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:8–12, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20170  相似文献   

7.
We report here a one step synthesis of a new series of bis‐[1,2,4‐triazolo][4,3‐a:3′,4′‐d][1,5]benzodiazepines 3ae and [1,2,4]oxadiazolo[5,4‐d][1,2,4]triazolo[4,3‐a][1,5]benzodiazepines 5ac by the condensation reactions of diarylnitrilimines and arylonitrile oxides. This 1,3‐dipolar cycloaddition is completely regioselective. The structure of these products has been confirmed by 1H, 13C NMR and mass spectroscopic.  相似文献   

8.
Five new coordination polymers, namely, [Ni2(L)2(4, 4′‐bipy)3)] · H2O]n ( 1 ), [Ni2(L)2(O) (bpp)2]n ( 2 ), [Zn(L)(bib)0.5]n ( 3 ), [Zn(L)(PyBIm)]n ( 4 ), and [Zn3(L)2(OH)(im)]n ( 5 ) [H2L = benzophenone‐2, 4′‐dicarboxylic acid, 4, 4′‐bipy = 4, 4′‐bipyridine, bpp = 1, 3‐bis(4‐pyridyl)propane, PyBIm = 2‐(4‐pyridyl)benzimidazole, and im = imidazole] were synthesized under hydrothermal conditions. Structure determination revealed that compound 1 is a 3D network and exhibits a 4‐connected metal‐organic framework with (42.63.8) topology, whereas compounds 2 , 3 , 4 , and 5 are two‐dimensional layer structures. In compounds 2 – 4 , dinuclear metal clusters are formed through carboxylic groups. In compound 5 , trinuclear metal clusters are formed through μ3‐OH and carboxylic groups. The carboxylic groups exhibit three coordination modes in compounds 1 – 5 : monodentately, bidentate‐chelating, and bis‐monodentately. Furthermore, the luminescent properties for compounds 3 , 4 , and 5 were investigated.  相似文献   

9.
Three novel ferrocenyl Schiff base ligands containing pyridine moiety have been formed by 1:2 molar condensation of 1,1′‐diacetylferrocene with 2‐aminopyridine, 2‐amino‐5‐picoline or 2‐amino‐5‐chloropyridine, respectively. The ligands are 1,1′‐bis[1‐(pyridyl‐2‐imino)‐ethyl]ferrocene (L1); 1,1′‐bis[1‐(5‐methyl‐pyridyl‐2‐imino)ethyl]ferrocene (L2) and 1,1′‐bis[1‐(5‐chloropyridyl‐2‐imino)ethyl]ferrocene (L3). These ligands form 1:1 complexes with Co(II), Cu(II), Ni(II) and Zn(II) ions. The prepared ligands and their complexes have been characterized by IR, 1H NMR, 13C NMR, UV/Vis spectra as well as elemental analysis. The spectral data of the ligands and their complexes are discussed in connection with the structural changes due to complexation.  相似文献   

10.
A series of spiro[indoline‐3,2′‐[1,3,4]oxadiazol]‐2‐ones were prepared from the reaction of isatin derivatives and hydrazonoyl chlorides through the 1,3‐dipolar cycloaddition reaction. This method has some important aspects, such as mild reaction condition, easy purification, and high yield of products. Also, the synthesis of spiro[acenaphthylene‐1,2′‐[1,3,4]oxadiazol]‐2‐one and spiro[[1,3,4]oxadiazole‐2,9′‐phenanthren]‐10′‐one were studied under the same condition. The structures were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this reaction is proposed.  相似文献   

11.
A new 5‐arylidene‐4‐oxo‐(sulfonamoyl phenyl)‐spiro[thiazolidinone‐2,2′‐steroids] series (7–10) was prepared by condensation of sulfanilamide, sulfapyridine and sulfadiazine sulfa drugs with testosterone, epiandrosterone and progesterone steroids, respectively. The resultant imino derivatives 1–3 upon cycloaddition with thioacetic acid in dry 1,4‐dioxane afforded 3‐sulfo‐namoylphenylspiro[4‐oxo‐thiazolidin‐2,2′steroids] (4–6). The latter compounds (4–6) upon condensation with p‐fluorobenzaldehyde in ethanol‐piperidine yielded the corresponding 4‐fluoroarylidene derivatives 7, 8 & 9, respectively. All the newly synthesized compounds were confirmed by UV, IR, 1H NMR, 13C NMR, mass spectral data, elemental analysis and molecular weight determination. In vitro antimicrobial screening of some of the synthesized compounds showed good antimicrobial activities towards some pathogenic Gram‐positive, Gram‐negative bacteria and fungi vs. piperacillin and mycostatine antibiotics as standard antibacterial and antifungal agents, respectively. The voltammetric behavior of two newly spirothiazolidinone steroids ( 2a & 5a ) was critically studied. Compound 5a physically immobilized polyurethane foam solid sorbent was successfully used for removal and/or separation of bismuth(III) from water.  相似文献   

12.
Polypyridyl ligand 9a,13a‐dihydro‐4,5,9,14‐tetraaza‐benzo[b]triphenylene‐11‐yl)‐phenyl‐methanone (BDPPZ) and its complexes [Ru(bpy)2BDPPZ]2+, [Ru(dmb)2BDPPZ]2+ and [Ru(phen)2BDPPZ]2+ (where bpy = 2,2′‐bipyridine, dmb = 4,4′‐dimethyl‐2,2′‐bipyridine, phen = 1,10‐phenanthroline) have been synthesized and characterized by elemental analysis, IR, UV–vis, 1H‐NMR, 13C‐NMR and mass spectra. The DNA‐binding properties of the complexes were investigated by absorption, emission, melting temperature and viscosity measurements. Experimental results indicate that the three complexes can intercalate into DNA base pairs. Photo activated cleavage of pBR‐322 DNA by the three complexes was also studied. Further, all three Ru(II) complexes synthesized were screened for their antimicrobial activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The synthesis and antimicrobial activity of palladium(II) and platinum(II) complexes derived from heterocyclic bidentate ligands, namely 2‐(2′‐aminophenyl)benzoxazole [L1H2], 2‐(2′‐hydroxyphenyl)benzoxazole [L2H], and 2‐(2′‐mercaptophenyl)benzoxazole [L3H], are reported here. These complexes have been characterized by elemental analyses, molecular weight determinations, conductance measurements, infrared, 1H NMR, and electronic spectral studies. The resulting colored complexes are monomeric in nature. On the basis of above‐described studies, square‐planar geometry has been suggested for the resulting complexes. The ligands and their metal complexes were tested against certain microorganisms to assess their antimicrobial properties. The results indicate that the metal complexes are found more active than the parent ligands. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:44–50, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20578  相似文献   

14.
Three‐ and five‐membered rings that bear the (Si‐C‐S ) and (Si‐C‐C‐C‐S ) unit have been synthesized by the reactions of L SiCl ( 1 ; L =PhC(NtBu)2) and L′ Si ( 2 ; L′ =CH{(C?CH2)(CMe)(2,6‐iPr2C6H3N)2}) with the thioketone 4,4′‐bis(dimethylamino)thiobenzophenone. Treatment of 4,4′‐bis(dimethylamino)thiobenzophenone with L SiCl at room temperature furnished the [1+2]‐cycloaddition product silathiacyclopropane 3 . However, reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si at low temperature afforded a [1+4]‐cycloaddition to yield the five‐membered ring product 4 . Compounds 3 and 4 were characterized by NMR spectroscopy, EIMS, and elemental analysis. The molecular structures of 3 and 4 were unambiguously established by single‐crystal X‐ray structural analysis. The room‐temperature reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si resulted in products 4 and 5 , in which 4 is the dearomatized product and 5 is formed under the 1,3‐migration of a hydrogen atom from the aromatic phenyl ring to the carbon atom of the C? S unit. Furthermore, the optimized structures of probable products were investigated by using DFT calculations.  相似文献   

15.
Several derivatives of the new pyrimido[4′,5′:3,4]pyrazolo[1,2‐b]phthalazine‐4,7,12‐trione ring system have been prepared by the reaction of 3‐amino‐1‐aryl‐5,10‐dioxo‐5,10‐dihydro‐1H‐pyrazolo[1,2‐b]phthalazine‐2‐carbonitriles with aliphatic carboxylic acids in the presence of phosphoryl chloride (POCl3). The synthesized compounds were characterized on the basis of IR, 1H NMR, and 13C NMR spectral and microanalytical data.  相似文献   

16.
A series of new substituted‐[1,2,4]oxadiazolo[5,4‐d][1,5]benzothiazepine derivatives containing pyrazole ring 4 / 4′ was synthesized by substituted‐pyrazolo[1,5]benzothiazepines 2 / 2′ and substituted‐benzohydroximinoyl chlorides 3 through the 1,3‐dipolar cycloaddition reaction in the presence of Et3N at room temperature, and characterized by MS, IR, 1H NMR and elemental analyses. In addition, the structure of 4′l was determined by X‐ray crystallography. J. Heterocyclic Chem., 2011.  相似文献   

17.
N‐Substituted N′‐[6‐methyl‐2‐oxido‐1,3,2‐dioxaphosphinino(5,4,‐b)pyridine‐2‐yl]ureas have been accomplished by condensation of equimolar quantities of chlorides of various carbamidophosphoric acids ( 3 ) with 3‐hydroxyl‐6‐methyl‐2‐pyridinemethanol (lutidine diol) ( 4 ) in the presence of triethylamine in dry toluene–tetrahydrofuran (1:1) mixture at 45–50°C. Their structures were established by elemental analyses, IR, 1H NMR, 13C NMR, and 31P NMR spectral data. Their antifungal and antibacterial activity is also evaluated. Most of these compounds exhibited moderate antimicrobial activity in the assays. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:509–512, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10181  相似文献   

18.
A new family of phosphorus heterocycles, namely 8‐alkylcarbamato‐16H‐dinaphtho‐[2,1‐d: 1′,2′‐g] 1,3,2‐dioxaphosphocin 8‐oxides ( 4a–j ) has been obtained by reaction of bis(2‐hydroxy‐1‐naphthyl)methane ( 3 ) with a series of dichlorophosphosphinyl carbamates ( 2a–j ) in dry toluene in the presence of triethylamine at 40–45°C. The intermediates 2a–j were obtained by the addition of alcohols/thiol to isocyanatophosphonic dichloride ( 1 ) at −10°C in dry toluene. The structures of the title compounds were confirmed by the elemental analyses, IR, 1H, 13C, and 31P NMR spectra. The FAB mass spectrum of one member of the family is discussed. These compounds were found to possess good antimicrobial activity. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:16–20, 2001  相似文献   

19.
Treatment of 5,5′‐dilithio‐2,2′‐dithiophene with (dimethylamino)methylsily bis(triflate)‐ or α, ω‐bis(triflate)‐substituted trisilanes gave poly[5,5′‐(silylene)‐2,2′‐dithienylene]s in high yields. The amino–silyl bond was cleaved selectively by triflic acid, leading to triflate‐substituted derivatives. Conversion of these compounds with nucleophiles gave other functionalized polymers. Platinum‐catalyzed hydrosilylation reactions between silicon–vinyl and silicon–hydrogen derivatives result in polymer networks which may serve as interesting preceramic materials. The structures of the polymers were proven by NMR spectroscopy (29Si, 13C, 1H). Results of thermal gravimetric analysis (TGA), UV spectrometry and conductivity measurements are given. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
(?)‐(1S,2R)‐Norbornene‐2‐carboxylic acid alkyl esters (alkyl = Me, Bz, L ‐menthyl, or D ‐menthyl) were successfully prepared by the Diels–Alder reaction of cyclopentadiene with (R)‐(?)‐pantolactone‐O‐yl acrylate followed by epimerization and column chromatography. The enantiomeric excess was 99.9%. These monomers were polymerized by Pd(II)‐based catalysts, and high yields of the polymers were obtained. The methyl ester gave an optically active polymer of high optical rotation (monomer [α]D = ?24.7, polymer [α]D = ?98.5). This high rotation value of the polymer was attributed to the isotactic chain regulation of the polymer. This high rotation was not observed with methyl esters prepared by the transesterification of menthyl esters. The stereoregular polymer exhibited notable resonance peaks at 39 ppm in 13C NMR spectra. No crystallinity was observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1263–1270, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号