首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crack‐free, rod‐shaped single crystals of undoped and 0.5, 0.7 and 1.0 mol% ZrO2‐doped LiNbO3 with a near‐stoichiometric composition were grown by the micro‐pulling down (μ‐PD) method. The structural properties of the grown crystals were examined by powder X‐ray diffraction (XRD). Electron probe micro analysis (EPMA) of the near‐stoichiometric LiNbO3 single crystals revealed the homogeneous incorporation of Zr ions. The change in the refractive index and IR transmission spectra of the grown crystals were examined as a function of the Zr concentration. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Near‐stoichiometric Mn:Fe:LiNbO3 crystals doped with various concentration of ZrO2 were grown by top seed solution growth (TSSG) method in the air atmosphere. The Zr concentration in the crystal was determined by inductively coupled plasma optical emission spectrometer. The defect structures were analyzed by means of ultraviolet‐visible and infrared transmittance spectra. The appearance of vibration peak at 3466 cm‐1 in infrared spectra manifested that Li/Nb ratio in crystals approached to stoichiometric proportion. The fundamental absorption edge represented continuous red‐shift which was discrepancy with congruent doped LiNbO3 crystals showed that doping ions possessed different location mechanism. The light‐induced scattering of the doped stoichiometric LiNbO3crystals were quantitatively scaled via incident exposure energy. The results demonstrated that Zr(2 mol%):Mn:Fe:LiNbO3 crystal had the weakest light‐induced scattering and the mechanism related to their defect structures was discussed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Near‐stoichiometric LiNbO3 single crystal tri‐doped with ZrO2, MnO and Fe2O3 was grown from Li‐riched melt by Czochralski method. The defect structures and composition of these crystals were analyzed by means of ultraviolet‐visible and infrared transmittance spectra. The appearance of 3466 cm‐1 peak in infrared spectra showed that the crystal grown from Li‐riched melt was near stoichiometric. The photorefractive properties at the wavelength of 488 nm and 633 nm were investigated with two‐beam coupling experiment, respectively. The experimental results showed that the response speed and sensitivity were enhanced significantly and the high diffraction efficiency was obtained at 488 nm wavelength. This manifested that near‐stoichiometric LiNbO3:Mn:Fe:Zr crystal was an excellent candidate for holographic storage. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
1 mol%, 2 mol%, 3 mol%, 4 mol% and 5 mol% In3+ doped LiNbO3 crystals were grown by the Czochralski method, respectively. Oxidized treatment of some crystals was carried out. The infrared transmission spectra and photo‐damage resistance of the samples were measured. The results showed that the OH absorption peaks of In(3mol%):LiNbO3, In(4mol%):LiNbO3 and In(5mol%):LiNbO3 crystals were located at about 3508 cm‐1, while those of In(1mol%):LiNbO3 and In(2mol%):LiNbO3 crystals were located at about 3484cm‐1. When the doped In3+ concentration reached its threshold in LiNbO3 crystal, photo‐damage resistance of In:LiNbO3 crystals was two orders of magnitude higher than that of pure LiNbO3 crystal. The experimental results of the second harmonic generation (SHG) showed that the phase matching temperatures of In:LiNbO3 crystals were lower than those of Zn:LiNbO3 and Mg:LiNbO3 crystals and the SHG efficiency reached 38%. Oxidization treatment was also found to make the dark trace resistance of crystals increase. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Congruent LiNbO3:Fe and LiNbO3:Mg,Fe crystals were grown by Czochralski method, and vapor transport equilibration technique was employed to improve the [Li]/[Nb] ratios of these crystals. The influence of stoichiometry and MgO dopant on the photorefractive sensitivity and response time of LiNbO3:Fe crystals was investigated. Both stoichiometry and MgO dopant can effectively reduce the amount of intrinsic defects, but MgO can also decrease the concentration of Fe2+ ions in Li‐sites. Near‐stoichiometric and MgO doped LiNbO3:Fe crystal has high photorefractive sensitivity and fast response time. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Two kinds of near‐stoichiometric LiNbO3 crystals (SLN11 and SLN19) were grown by a flux pulling method from stoichiometric melt with addition of 11mol%K2O and 19mol%K2O, respectively. Compared with the congruent melting LiNbO3, the ultraviolet absorption edges of two crystals shift towards shorter wavelengths, and the locations of the OH infrared absorption band have obvious change and the bandwidths become greatly narrower. From these experimental results, the Li2O contents are determined indirectly to be about 49.6mol% for SLN11 and 49.9mol% for SLN19, respectively. The Li2O content in SLN19 is very close to the ideal value of 50mol%. The coercive fields of two crystals were measured by the poling method at room temperature. A linear relationship between the Li2O content and the coercive field was fitted. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In:Fe:Cu:LiNbO3 crystals were grown in air by the Czochralski technique with various [Li]/[Nb] ratios of 0.946, 1.050, 1.200, and 1.380 in melt. Based on the ICP‐AES (inductively coupled plasma atomic emission spectrometry) analyzed results, the chemical formula of the triple‐doped In:Fe:Cu:LiNbO3 crystals were obtained. It can be seen that the near‐stoichiometric ratio value is between 1.050 and 1.200 for our samples. The optical damage resistance of In:Fe:Cu:LiNbO3 crystals was characterized by changes in light‐induced birefringence and it increases with the increasing of [Li]/[Nb] ratios. The dependence of the optical damage resistance on the defect structure of In:Fe:Cu:LiNbO3 crystals is discussed in detail based on the obtained chemical formulas. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A series of lithium niobate (LiNbO3) crystals of congruent and stoichiometric compositions, doped with erbium, have been grown under non-steady-state thermal conditions. A series of LiNbO3:Zn crystals, nominally pure LiNbO3 crystals of congruent and stoichiometric compositions, and a LiNbO3:B crystal have also been grown. Both growth conditions and concentration dependences of physicochemical, ferroelectric, and structural characteristics of LiNbO3:Er crystals are investigated. The growth regular domain microstructures and periodic nanostructures in LiNbO3:Er crystals are analyzed by optical microscopy and atomic force microscopy (AFM). A comparative study of the optical homogeneity and photorefractive properties of LiNbO3:Er crystals of congruent and stoichiometric compositions and the Raman spectra of LiNbO3 crystals of different compositions is performed.  相似文献   

9.
The near sotichiometric Ce:LiNbO3 (Ce:SLN) crystals were grown by the top seeded solution growth (TSSG) method by adding K2O flux to Li2O‐Nb2O5 melt. Their UV‐vis absorption spectra and IR spectra were measured and discussed to investigate their defect structure. The results showed that the grown crystals were near stoichiometric and Ce ions in the crystals located the Li site. Photorefractive properties of Ce:SLN crystals were studied by two‐wave coupling experiment. The results of the two‐wave coupling experiments of the crystals showed that as the CeO2 doping concentrations increased, the diffraction efficiency increased, photoconductivity decreased and the writing time and erasure time increased. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The pure congruent LiNbO3, Er:LiNbO3 and Zn,Er co‐doped Li‐rich LiNbO3 crystals were grown by Czochralski method. The X‐ray diffraction method and ultraviolet‐visible absorption spectra of the crystals were used to analyze the structure of the crystals. The photo‐damage ability resistance of the crystals was measured. The Zn,Er co‐doped Li‐rich LiNbO3 crystals show a decrease in lattice constant values, a shift in absorption edge of ultraviolet‐visible absorption spectra towards shorter wavelength, and three orders of magnitude increase in photo‐damage resistance compared to congruent LiNbO3 crystal. The intrinsic and extrinsic defects are discussed to explain the enhance of the photo‐damage ability resistance  相似文献   

11.
A series of Sc:Er:LiNbO3 crystals have been grown by Czochralski method. Their ultraviolet‐visible (UV‐Vis) absorption spectra was measured and discussed to investigate their defect structure. The optical damage resistance of Sc:Er:LiNbO3 crystals was characterized by the transmitted beam pattern distortion method. It increases remarkably when the concentration of Sc2O3 exceeds a threshold concentration. The optical damage resistance of Sc (3.0mol %):Er:LiNbO3 is much higher than that of the Er:LiNbO3. The intrinsic and extrinsic defects were discussed to explain the enhance of the optical damage resistance in the Sc:Er:LiNbO3 crystals. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A near stoichiometric LiNbO3 single crystal has been grown by the Czochralski method from a 58.5% Li melt hold in a large platinum crucible. High resolution X‐ray rocking curves of 30 0 and 0006 reflections indicated that the near stoichiometric LiNbO3 crystal possesses the high structural quality. Compared with the congruent LiNbO3, the near stoichiometric LiNbO3 possesses shorter ultraviolet absorption edge, thus higher Li concentration. The OH infrared absorption band analyses showed that the Li concentration in the near stoichiometric LiNbO3 crystal is higher than that in the congruent LiNbO3 crystal. This result is in good agreement with that of the ultraviolet absorption edge. The electro‐optic (EO) coefficient γ22 of the near stoichiometric LiNbO3 crystal was measured to be 6.75 pm/V higher than that of congruent LiNbO3 crystal. It also proves the near stoichiometric LiNbO3 electro‐optic Q‐switched requires a low driving voltage and it is advantageous for the device performance. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Mg: Er: LiNbO3 crystals were grown by the Czochralski technique with various concentrations of MgO = 2 mol%, 4 mol%, 6 mol% and the fixed concentration of Er2O3= 1 mol% in the melt, and the 8 mol%Mg: 1 mol%Er: LiNbO3 crystal was fabricated by the Czochralski technique with special technology process. The crystals were treated by polarization, reduction and oxidation. The segregation coefficients of Mg2+ and Er3+ in Mg: Er: LiNbO3 crystals were measured by X‐ray fluorescence spectrograph, as well as the crystal's defect structure and optical properties were analyzed by the UV‐Vis, IR and fluorescent spectroscopy. The pump wavelength and the surge wavelength were determined. Using m‐line method tested optical damage resistance of those crystals, the results show that photodamage threshold of Mg: Er: LiNbO3 crystals are higher than that of Er: LiNbO3 crystal, and the oxidation treat could enhance the photodamage resistant ability of crystals while the reduction treat could depress the ability. The optical damage resistance of 8 mol%Mg: 1 mol%Er: LiNbO3 crystal was the strongest among the samples, which was two orders magnitude higher than that of 1 mol%Er: LiNbO3 crystal. The dependence of the optical properties on defect structure of Mg: Er: LiNbO3 crystals was discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The Er3+doped Mg:LiNbO3single crystal fibers employed in our experiment were grown in air by a micro‐pulling down (μ‐PD) method from host materials of a congruent Li/Nb (0.945) ratio which were melt‐doped with a nominal molar concentration of 1, 3, 5% MgO and 0.6% Er2O3. The X‐ray diffraction analysis results indicated that the co‐doped crystals main tained the same structural characteristics as the undoped LiNbO3, however the lattice parameters with Mg differed; c (Å) value decreased, and a (Å) increased than of pure LiNbO3. The influence of dopants on the photoluminescence (PL) properties of the Er:Mg:LiNbO3 single crystal fibers excited by laser lines of 514 nm was reported. Also, the PL properties according to temperature and the excitation power of Er:Mg:LiNbO3 crystal fibers were analyzed.  相似文献   

15.
LiNbO3 is a ferroelectric crystal and grows with multi domains. Different domains are separated by boundaries which are known as domain boundaries. Domain walls for congruent and VTE (Vapor Transport Equilibration) treated near stoichiometric lithium niobate samples were visualised in different crystallographic directions using chemical etching technique. The sample is etched in the mixture of HF and HNO3 (in 1:2 volume ratios) for 10 minutes at boiling temperature. Measured domain wall width was found approximately 15‐20 µm for congruent (CLN) and it reduces to 1‐3 µm for VTE treated near stoichiometric (SLN). Activation energies were also measured by two‐probe method and found to be increasing in stoichiometric sample. This activation energy is related to defect density in the crystals. Activation energy is higher for less defective crystals. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
6.0 mol. % ZnO doped LiNbO3 crystals were grown by Czochralski technique. Various Li/Nb mole ratios of 0.942, 0.970, 1.000, and 1.020 were used to prepare the starting materials. Second harmonic generation (SHG) experimental results show that the phase matching temperature increases near linearly with the increasing of Li/Nb ratio, and the SHG efficiency is enhanced by the Zn doping and the increasing of Li/Nb ratio. The intrinsic and extrinsic defects are discussed in this paper to explain the SHG behavior and photo‐damage resistance in the Zn doped Li‐rich LiNbO3 crystals.  相似文献   

17.
Using the micro‐pulling down (μ‐PD) method, 1 and 3 mol% Nd2O3 doped near stoichiometric lithium niobate (LiNbO3) single crystal fibers were grown in 1 mm diameter and 35∼40 mm length. The grown crystal fibers were free of cracks and the homogeneous distribution of Nd3+ ion concentrations were confirmed by the electron probe micro analysis. The changes of fluorescence spectra were measured with respect to the Nd3+ ion doping concentration. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The specific features of photorefractive light scattering in nominally pure stoichiometric (Li/Nb = 1) sin- gle crystals grown from a melt with 58.6 mol % Li2O (LiNbO3st) and in the stoichiometric single crystals grown from a melt of congruent composition in the presence of K2O flux (LiNbO3stK2O) have been investi- gated. At an excitation power of 30 mW, LiNbO3stK2O single crystals are found to exhibit a stronger photo- refractive effect than LiNbO3st single crystals.  相似文献   

19.
In:Zn:LiNbO3 crystals doped with different indium concentrations were grown by Czochralski technique. The optical damage threshold value and ultraviolet‐visible absorption spectra of the In:Zn:LiNbO3 crystals were measured. The In:Zn:LiNbO3 crystals were made into optical waveguide substrates using hexanedioic acid as proton exchange agent. The optical damage resistant ability of those optical waveguide substrates was investigated by the m‐line method. The optical damage threshold values of In(2mol.%):Zn(3mol.%):LiNbO3 crystal and optical waveguide substrate are two orders of magnitude higher than those of pure LiNbO3. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The effect of post treatment on the photorefractive properties of Ru‐doped lithium niobate was studied. The absorption spectra examination of Ru‐doped LiNbO3 crystals with different post treatments showed that the absorption coefficient at 530 nm increased after the reduced treatment was employed and the absorption edge of the reduced crystal shifted towards the infrared band. On the contrary, the trend reversed after the oxidized treatment was employed. In addition, the photorefractive properties were investigated with the two‐beam coupling method conducted via a 532 nm solid state laser. It was found that the oxidized Ru:LiNbO3 had smaller exponential gain coefficient and diffraction efficiency because the charges in the shallow level were exchanged to the deep level. On the other hand, the reduced Ru:LiNbO3 crystals had larger exponential gain coefficient and diffraction efficiency due to the increase of the Ru3+ which existed in the shallow level. The response times of both oxidized and reduced Ru:LiNbO3 were longer than those of the as‐grown ones. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号