首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GeO2 thin films were prepared by sol‐gel method on ITO/Glass substrate. The electrical and optical properties and the microstructures of these films were investigated with special emphasis on the effects of an annealing treatment in ambient air. The films were annealed at various temperatures from 500 °C to 700 °C. Structural analysis through X‐ray diffraction (XRD) and atomic force microscope (AFM) showed that surface structure and morphological characteristics were sensitive to the treatment conditions. The optical transmittance spectra of the GeO2/ITO/Glass were measured using a UV‐visible spectrophotometer. All films exhibited GeO2 (101) orientation perpendicular to the substrate surface where the grain size increased with increasing annealing temperature. The optical transmittance spectroscopy further revealed high transparency (over 70 %) in the wave range 400 – 800 nm of the visible region. At an annealing temperature level of 700 °C, the GeO2 films were found to possess a leakage current density of 1.31×10‐6A/cm2 at an electrical field of 20 kV/cm. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Thin films of Sb2Te2Se were prepared by conventional thermal evaporation of the presynthesized material on Corning glass substrates. The chemical composition of the samples was determined by means of energy‐dispersive X‐ray spectrometry. X‐ray diffraction studies on the as‐deposited and annealed films revealed an amorphous‐to‐crystalline phase transition. The as‐deposited and annealed films at T a = 323 and 373 K are amorphous, while those annealed at T a= 423 and 473 K are crystalline with a single‐phase of a rhombohedral crystalline structure as that of the source material. The unit‐cell lattice parameters were determined and compared with the reported data. The optical constants (n , k ) of the investigated films were determined from the transmittance and reflectance data at normal incidence in the spectral range 400–2500 nm. The analysis of the absorption spectra revealed non‐direct energy gaps, characterizing the amorphous films, while the crystalline films exhibited direct energy gaps. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Titanium dioxide films have been deposited using DC magnetron sputtering technique onto silicon substrates at an ambient temperature and at an oxygen partial pressure of 7 × 10 –5 mbar and sputtering pressure (Ar + O2) of 1 × 10 –3 mbar. The deposited films were calcinated at 673 and 773 K. The composition of the films as analyzed using Auger Electron Spectroscopy (AES) revealed the stoichiometry with an O and Ti ratio of 2.08. The influence of post‐deposition calcination on the Raman scattering of the films was studied. The existence of Raman active modes A1g, B1g and Eg corresponding to the Raman shifts are reported in this paper. The improvement of crystallinity of the TiO2 films as shown by the Raman scattering studies has also been reported. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
ABSTRACT

TiO2:SnO2 thin films were deposited on glass substrates, by using sol gel spin coating method with different ratio (3%, 5% and 7%) at 3200 rpm, to study their effect on different properties of TiO2: SnO2 thin films. The structural and optical properties of films have studied for different ratio. These deposited films have been characterized by various methods such as X-Ray Diffraction (XRD), Ultra Visible spectroscopy. The (XRD) can be used to identify crystal structure of as deposited films. The Transmission spectra have shown the transparent and opaque parts in the visible and UV wavelengths.  相似文献   

5.
Influences of the different annealing ambient (in air, 1 bar, 2 bar, 3 bar and 4 bar oxygen partial pressure) on the titanium dioxide (TiO2) thin films deposited on soda lime glass by standard radio frequency (rf) magnetron reactive sputtering method at 100 watt were investigated by means of X–ray diffractometer (XRD), ultra violet spectrometer (UV–vis), and Scanning Electron Microscopy (SEM). It was found that either optical properties or energy band gaps of the films enhanced with increase in the oxygen partial pressure up to 3 bar. The energy band gaps of the films (except for the film annealed in 4 bar oxygen partial pressure) became larger than the film annealed in atmospheric pressure. The best transmission was observed for the thin film annealed in 3 bar oxygen partial pressure. Moreover, not only was grain–like structure found to be more dominant than dot–like structure but also growth of anatase phase was observed instead of that of the rutile phase with increasing oxygen partial pressure up to 3 bar. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Thermally processed lead iodide (PbI2) thin films were prepared by the vacuum evaporation method in a constant ambient. Measured thickness of the film was verified analytically from the optical transmittance data in a wavelength range between 300 and 1600 nm. From the Tauc relation for the non‐direct inter band transition, the optical band gap of the film was found to be 2.58 eV for film thickness 300 nm. X‐ray diffraction analysis confirmed that PbI2 films are polycrystalline, having hexagonal structure. The low fluctuation in Urbach energy indicates that the grain size is quite small. The present findings are in agreement with the other results. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Thin films of tin selenide (SnSe) were deposited on sodalime glass substrates, which were held at different temperatures in the range of 350‐550 K, from the pulverized compound material using thermal evaporation method. The effect of substrate temperature (Ts) on the structural, morphological, optical, and electrical properties of the films were investigated using x‐ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission measurements, and Hall‐effect characterization techniques. The temperature dependence of the resistance of the films was also studied in the temperature range of 80‐330 K. The XRD spectra and the SEM image analyses suggest that the polycrystalline thin films having uniform distribution of grains along the (111) diffraction plane was obtained at all Ts. With the increase of Ts the intensity of the diffraction peaks increased and well‐resolved peaks at 550 K, substrate temperature, were obtained. The analysis of the data of the optical transmission spectra suggests that the films had energy band gap in the range of 1.38‐1.18 eV. Hall‐effect measurements revealed the resistivity of films in the range 112‐20 Ω cm for films deposited at different Ts. The activation energy for films deposited at different Ts was in the range of 0.14 eV‐0.28 eV as derived from the analysis of the data of low‐temperature resistivity measurements. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
This study deals with the role of the different substrates on the microstructural, optical and electronical properties of TiO2 thin films produced by conventional direct current (DC) magnetron sputtering in a mixture of pure argon and oxygen using a Ti metal target with the aid of X–ray diffractometer (XRD), ultra violet spectrometer (UV–vis) and atomic force microscopy (AFM) measurements. Transparent TiO2 thin films are deposited on Soda lime glass, MgO(100), quartz and sitall substrates. Phase purity, surface morphology, optical and photocatalytic properties of the films are compared with each other. It is found that the amplitude of interference oscillation of the films is in a range of 77‐89%. The transmittance of the film deposited on Soda lime glass is the smallest while the film produced on MgO(100) substrate obtains the maximum transmittance value. The refractive index and optical band gap of the TiO2 thin films are also inferred from the transmittance spectra. The results show that the film deposited on Soda lime glass has the better optical property while the film produced on MgO(100) substrate exhibits much better photoactivity than the other films because of the large optical energy band gap. As for the XRD results, the film prepared on MgO(100) substrate contains the anatase phase only; on the other hand, the other films contain both anatase and rutile phases. Furthermore, AFM images show that the regular structures are observed on the surface of all the films studied. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Titanium dioxide films have been deposited using DC magnetron sputtering technique. Films were deposited onto RCA cleaned p‐silicon substrates at the ambient temperature at an oxygen partial pressure of 7 × 10–5 mbar and sputtering pressure of 1 × 10 –3 mbar. The deposited films were annealed in the temperature range 673–873 K. The structure and composition of the films were confirmed using X‐ray diffraction and Auger electron spectroscopy. The structure of the films deposited at the ambient was found to be amorphous and the films annealed at 673 K and above were crystalline with anatase structure. The lattice constants, grain size, microstrain and the dislocation density of the film are calculated and correlated with annealing temperature.  相似文献   

10.
Transparent Zinc Oxide (ZnO) thin films have been grown on Si (100) and Sapphire (0001) substrates by RF magnetron sputtering for different growth time intervals (10, 30 and 60 min) to study the substrate and thickness effects. All the films have been grown at a substrate temperature of 450 °C. It has been found that the average growth rate on Si (100) substrate (8.6 nm/min) is higher than that on Sapphire (0001) substrate (2.6 nm/min) in an identical growth condition which clearly shows the virtual role of substrates. The lower growth rate on Sapphire (0001) suggests that the increasingly ordered and uniform growth due to less lattice mismatch. The grown films have been characterized by X‐ray diffraction (XRD), Reflectance, Photoluminescence (PL) and Hall measurements. The XRD result (FWHM) reveals that for lower growth time, the films grown on Si (100) is better than on Sapphire (0001). Conversely, for higher growth time, the films grown on Sapphire (0001) is better than on Si (100). The variation of strain behavior due to thickness on both substrates has been justified by UV‐Vis reflectance, photoluminescence and Hall effect measurements. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Optical constants of DC magnetron sputtered TiO2 thin film have been determined by Spectroscopic Ellipsometry in the photon energy range 1.2 to 5.5 eV at room temperature. The measured dielectric‐function spectra reveal distinct structures at energies of the E1, E1 + Δ1 and E2 critical points are due to interband transitions. The root mean square roughness of the magnetron sputtered TiO2 thin films evaluated by ex‐situ atomic force microscopy is 5.8 nm. The Dielectric constant values were found to be substantially lower than those for the bulk TiO2. The dielectric related Optical constants, such as the refractive index, extinction coefficient, absorption coefficient and normal incidence of reflectivity determined from the spectroscopic ellipsometry data are presented and analyzed. The optical constants of the films were also determined using the optical transmittance measurements and the results were discussed. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Mixed ZnO‐ZrO2 films have been obtained by sol‐gel technology. By using spin coating method, the films were deposited on Si and glass substrates. The influence of thermal annealings (the temperatures vary from 400 °C to 750 °C) on their structural properties has been studied. The structural behavior has been investigated by the means of XRD and FTIR techniques. The results revealed no presence of mixed oxide phases, the detected crystal phases were related to the hexagonal ZnO and to crystalline ZrO2. The sol‐gel ZnO‐ZrO2 films showed polycrystalline structure with a certain degree of an amorphous fraction. The optical transmittance reached 91% and it diminished with increasing the annealing temperatures. The optical properties of the sol‐gel ZnO‐ZrO2 films, deposited on glass substrates are excellent with high transparency and better then those of pure ZrO2 films, obtained at similar technological conditions. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Sb2S3 amorphous thin films were prepared by thermal evaporation of corresponding powder on thoroughly cleaned glass substrates held at temperature in the range 300‐473 K. X‐ray diffraction and atomic force microscopy have been used to order to identify the structure and morphology of surface thin films. The optical constants of the deposition films were obtained from the analysis of the experimental recorded transmission data over the wavelength range 400‐1400 nm. An analysis of the absorption coefficient values revealed an optical indirect transition with the estimation of the corresponding band gap values. It was found that the optical band gap energy decrease with substrate temperature from 1.67 eV at 300 K to 1.48 eV at 473K. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Polycrystalline cadmium doped gallium selenide thin films were obtained by the thermal co‐evaporation of GaSe crystals and Cd grains onto glass substrates. The structural, compositional and optical properties of these films have been investigated by means of X‐ray diffraction, energy dispersive X‐ray analysis and UV‐visible spectroscopy techniques, respectively. Particularly, the elemental analysis, the crystalline nature, the energy band gap, the refractive index, the dispersion energy and static dielectric constant have been identified. The absorption coefficient spectral analysis in the sharp absorption region revealed a direct forbidden energy band gap of 1.22 eV. The cadmium doping has caused a significant decrease in the values of the energy band gap and in all the dispersive optical parameters, as well. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Single crystals of L‐Arginine Fluoride (LAF) have been grown by the slow evaporation technique, and the crystalline perfection was studied by HRXRD. Optical absorption studies reveal the lower cut off wavelength (280 nm) and the band gap (5.1 eV). The dielectric constant and dielectric loss have been measured as a function of frequency (42 Hz–5 MHz) and temperature (307‐368K) and the activation energy is 77 μeV. The thermal transport properties such as thermal conductivity (0.88 ± 0.02 W/mK) and specific heat capacity (482±24 J/kg/K) have been estimated by the photopyroelectric technique. The nonlinear refractive index n2, is found to be of the order of 10−13 cm2/W by the Z‐scan technique.  相似文献   

16.
CdSe films have been deposited on glass substrates at different substrate temperatures between room temperature and 300 °C. The films exhibited hexagonal structure with preferential orientation in the (002) direction. The crystallinity improved and the grain size increased with temperature. Band gap values are found decreasing from about 1.92 eV to 1.77 eV with increase of the substrate temperature. It is observed that the resistivity decreases continuously with temperature. Laser Raman studies show the presence of 2 LO and 3 LO peaks at 416 cm‐1 and 625 cm‐1respectively. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The structural, electrical and optical properties of AgGa(Se0.5S0.5 )2 thin films deposited by using the thermal evaporation method have been investigated as a function of annealing in the temperature range of 450–600 °C. X‐ray diffraction (XRD) analysis showed that the structural transformation from amorphous to polycrystalline structure started at 450 oC with mixed binary phases of Ga2Se3, Ga2S3, ternary phase of AgGaS2 and single phase of S. The compositional analysis with the energy dispersive X‐ray analysis (EDXA) revealed that the as‐grown film has different elemental composition with the percentage values of Ag, Ga, Se and S being 5.58, 27.76, 13.84 and 52.82 % than the evaporation source powder, and the detailed information about the stoichometry and the segregation mechanisms of the constituent elements in the structure have been obtained. The optical band gap values as a function of annealing temperature were calculated as 2.68, 2.85, 2.82, 2.83, and 2.81 eV for as‐grown, annealed at 450, 500, 550, and 600 °C samples, respectively. It was determined that these changes in the band gap are related with the structural changes with annealing. The temperature dependent conductivity measurements were carried out in the temperature range of 250‐430 K for all samples. The room temperature resistivity value of as‐grown film was found to be 0.7x108 (Ω‐cm) and reduced to 0.9x107 (Ω‐cm) following to the annealing. From the variation of electrical conductivity as a function of the ambient temperature, the activation energies at specific temperature intervals for each sample were evaluated. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
采用大气开放式金属有机化合物化学气相沉积方法(AP-MOCVD),以四异丙醇钛(TTIP)为原料,在不同的实验条件下分别在Si(100)和玻璃基片上制备TiO2薄膜.当气化室温度为140℃,基片温度为350℃时,玻璃基片上生长的薄膜XRD谱中只出现了锐钛矿相(200)晶面的衍射峰,表明此时薄膜高度取向,在Si(100)基片上生长的TiO2薄膜也有取向性.通过SEM观察高度取向的TiO2薄膜表面出现四边形的微结构.  相似文献   

19.
CdSe:In films were prepared by electron beam evaporation technique using CdSe and In2Se3 (purity ∼99.9%) pellets. The crystal structure of the films with and without Indium, measured by X‐ray diffraction (XRD), showed a typical wurtzite structure, higher Indium doping shifts the peak angle to higher side along with the broadening of the peaks. X‐ray photoelectron spectroscopy (XPS) studies indicated binding energies corresponding to 54 eV (Se3d5/2), 444 eV (In 3d5/2), 411 eV (Cd 3d3/2), (Cd 3d5/2). Atomic force microscope (AFM) studies indicated a uniform surface.The grain size decreases with increase of In doping. A decrease in the band gap was observed with increase of dopant concentration. Resistivity of the films is in the range of 10‐3 Ωcm. Carrier density was in the range of 1021 cm‐3 for the films. The photolumineasenec spectra (PL) spectra indicated three peaks. The peak intensity decreases as the Indium concentration increases. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The chalcopyrite CuInS2 thin film was fabricated at 500 °C for 2 h by sulfurization of Cu‐In layers (as precursors) that were sulfurized in a glass tube with pure sulfur powder. The structural, morphological, and optical properties of CuInS2 thin films are characterized using X‐ray diffraction (XRD), field‐emission scanning electron microscope (FE‐SEM), and UV/Visible/NIR spectrophotometer. The study of UV/Visible/NIR absorption shows the band gap energy value of CuInS2 thin films is 1.5 eV. The XRD pattern shows the film is pure CuInS2; no other peaks, such as CuS or CuIn5S8 were observed. Furthermore, the surface of the CuInS2 film is compact characterized by FE‐SEM, which also shows the disappearance of CuS on the surface at 500 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号