首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2· H2O, was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As‐OH units, as well as the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O H···O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2− units in the crystal structure of burgessite was proved, which is in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The Raman spectra of 3‐(pent‐1‐enyl) methyl ether (3‐methoxypent‐1‐ene) and four deuterium‐labelled analogues are reported and discussed. Correlations between specific structural features and the associated Raman bands are developed, with a view to enhancing the analytical application of Raman spectroscopy in investigating materials containing an alkenyl group. Particular attention is given to developing means of distinguishing the methyl group attached to the carbon skeleton from that of the methoxy group, to maximize the analytical utility of the signals associated with ν(sp2 CH), ν(sp2 CH2) and ν(CC) stretching vibrations, and to interpreting in more detail certain δ(sp2 CH) and δ(sp2 CH2) vibrations of the atoms of the double bond. These results establish a definitive spectroscopic protocol for differentiating a methoxy group from a methyl substituent attached directly to a carbon atom in unsaturated ethers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Raman spectroscopy has been used to study the rare‐earth mineral churchite‐(Y) of formula (Y,REE)(PO4) ·2H2O, where rare‐earth element (REE) is a rare‐earth element. The mineral contains yttrium and, depending on the locality, a range of rare‐earth metals. The Raman spectra of two churchite‐(Y) mineral samples from Jáchymov and Medvědín in the Czech Republic were compared with the Raman spectra of churchite‐(Y) downloaded from the RRUFF data base. The Raman spectra of churchite‐(Y) are characterized by an intense sharp band at 975 cm−1 assigned to the ν1 (PO43−) symmetric stretching mode. A lower intensity band observed at around 1065 cm−1 is attributed to the ν3 (PO43−) antisymmetric stretching mode. The (PO43−) bending modes are observed at 497 cm−12) and 563 cm−14). Some small differences in the band positions between the four churchite‐(Y) samples from four different localities were found. These differences may be ascribed to the different compositions of the churchite‐(Y) minerals. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
5.
A nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopic investigation of the intermolecular hydrogen‐abstraction reaction of the triplet state of 4‐benzoylpyridine (4‐BPy) in 2‐propanol solvent is reported. The TR3 results reveal a rapid hydrogen abstraction (<10 ns) by the 4‐BPy triplet state (nπ*) with the 2‐propanol solvent, leading to formation of a 4‐BPy ketyl radical and an associated dimethyl ketyl radical partner from the solvent. The recombination of these two radical species occurs with a time constant about 200 ns to produce a para‐N‐LAT (light absorbing transient). The structure, major spectral features, and identification of the ketyl radical and the para‐N‐LAT coupling complex have been determined and confirmed by comparison of the TR3 results with results from density functional theory (DFT) calculations. A reaction pathway for the photolysis of 4‐BPy in 2‐propanol deduced from the TR3 results is also presented. The electron‐withdrawing effect of the heterocyclic nitrogen for 4‐BPy on the triplet state makes it have a significantly higher chemical reactivity for the hydrogen abstraction with 2‐propanol compared to the previously reported corresponding benzophenone triplet reaction under similar reaction conditions. In addition, the 4‐BPy ketyl radical reacts with the dimethyl ketyl radical to attach at the para‐N atom position of the pyridine ring to form a cross‐coupling product such as 2‐[4‐(hydroxy‐phenyl‐methylene)‐4h‐pyridin‐1‐yl]‐propan‐2‐ol instead of attacking at the para‐C atom position as was observed for the corresponding benzophenone reaction reported in an earlier study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The sensitivity of far‐field Raman micro‐spectroscopy was investigated to determine quantitatively the actual thickness of organic thin films. It is shown that the thickness of organic films can be quantitatively determined down to 3 nm with an error margin of 20% and down to 1.5 nm with an error margin of 100%. Raman imaging of thin‐film surfaces with a far‐field optical microscope establishes the distribution of a polymer with a lateral resolution of ~400 nm and the homogeneity of the film. Raman images are presented for spin‐coated thin films of polysulfone (PSU) with average thicknesses between 3 and 50 nm. In films with an average thickness of 43 nm, the variation in thickness was around 5% for PSU. In films with an average thickness of 3 nm for PSU, the detected thickness variation was 100%. Raman imaging was performed in minutes for a surface area of 900 µm2. The results illustrate the ability of far‐field Raman microscopy as a sensitive method to quantitatively determine the thickness of thin films down to the nanometer range. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In surface‐enhanced Raman scattering (SERS), the scattered intensity is drastically increased due to a resonant interaction with surface plasmons of coin metals. SERS is a nondestructive spectroscopic method applied also to biomedical samples. It inherits the advantages of normal Raman spectroscopy and at the same time overcomes the inherent low sensitivity problem. These properties endow SERS with exciting opportunities to be a successful analytical tool for cell analysis. SERS can be used to detect only molecules located on or close to the metallic nanostructures which can support surface plasmon resonances for the enhancement of the Raman signals. Therefore, these metallic nanostructures play a key role in the application of SERS in cell analysis. By incorporating the SERS substrates into the biosamples, molecular structural probing and cellular imaging become possible. In the past decade, analysts worldwide have developed many schemes to study the chemical changes and component distribution in cells by using SERS. In this paper, the application of SERS in cell analysis is reviewed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The mineral brushite has been synthesised by mixing calcium ions and hydrogen phosphate anions to mimic the reactions in caves. The vibrational spectra of the synthesised brushite were compared with that of the natural cave mineral. Bands attributable to the PO43– and HPO42– anions are observed. Brushite, both synthetic and natural, is characterised by an intense sharp band at 985 cm−1 with a shoulder at 1000 cm−1. Characteristic bending modes are observed in the 300 to 600 cm−1 region. The spectra of the synthesised brushite matches very well the spectrum of brushite from the Moorba Cave, Western Australia. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Here, we report the nature of new di‐α‐amino (L1–L3) and α‐amino‐α‐hydroxyphosphinic (L4–L6) acids, which are considered potential inhibitors of the aminopeptidase N, adsorbed on a colloidal silver surface by means of surface‐enhanced Raman scattering (SERS) spectroscopy. In order to reveal the adsorption mechanism of these species from their SERS spectra, Fourier‐transform Raman (FT‐RS) spectra of these nonadsorbed molecules were measured. By examining the enhancement, shift in wavenumbers, and changes in breadth of the SERS bands due to the adsorption process, we revealed that the tilted compounds interact with the colloidal silver substrate mainly through the benzene ring, amino group, and phosphinic moiety in the following way. The benzene ring of L2 and L3 is ‘standing up’ on the colloidal silver surface, and the C N bond is almost vertical to it, while the tilt angle between the O PO bond and this surface is greater than 45°. On the other hand, for L1, L4, and L5, the aromatic ring and C N bond are arranged more or less tilted, and the tilt angle between the O PO bond and the silver substrate is smaller than 45°. The elongation of the bond to the benzene ring, the L6 case, produces an almost horizontal orientation of the benzene ring and the O PO bond on the silver nanoparticles. For these ligands, the complement inhibition IC50 tested in vitro using porcine kidney leucine aminopeptidase was correlated mainly with the behavior of the O PO and C CH N fragments on the silver surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In the present work, multiphase polycrystalline BTO nanorods were synthesized using template‐assisted sol–gel deposition and their structural evolution was studied using thermo Raman spectroscopy, X‐ray diffractometry and high‐resolution transmission electron microscopy (HRTEM). In the BTO nanorods, the tetragonal phase was the dominant one, while both Raman and HRTEM indicated a coexistence with the high‐temperature hexagonal polymorph. This phase was stable across the whole of the investigated temperature range (from −95 °C to 200 °C). The investigated nanorods underwent a diffuse phase transition from tetragonal to cubic with respect to the temperature, whereas the final phase‐transition temperature was shifted to higher values compared to that expected for BTO. The low‐temperature orthorhombic‐to‐rhombohedral phase transition was also shifted to higher temperatures. These differences could be explained by the strain induced by the presence of hexagonal nanolamellas intergrown within the tetragonal nanocrystals. This result indicates that the temperature of the ferroelectric phase transition in polycrystalline BTO nanorods can be manipulated by introducing a stable hexagonal phase. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The detection of explosives and their associated compounds for security screening is an active area of research and a wide variety of detection methods are involved in this very challenging area. Surface‐enhanced Raman scattering (SERS) spectroscopy is one of the most sensitive tools for the detection of molecules adsorbed on nano‐scale roughened metal surface. Moreover, SERS combines high sensitivity with the observation of vibrational spectra of species, giving complete information on the molecular structure of material under study. In this paper, SERS was applied to the detection of very small quantities of explosives adsorbed on industrially made substrates. The spectra were acquired with a compact Raman spectrometer. Usually, a high signal‐to‐noise (S/N) spectrum, suitable for identification of explosive molecules down to few hundreds of picograms, was achieved within 30 s. Our measurements suggest that it is possible to exploit SERS using a practical detection instrument for routine analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The techniques of inverse Raman spectroscopy, Raman‐induced polarization spectroscopy (RIPS), and optical heterodyne RIPS (OHD‐RIPS) are compared by probing the Q‐branch of the nitrogen molecule. The signal is measured employing either a photomultiplier tube (low background level–RIPS) or a photodetector (high background level–IRS and OHD‐RIPS). The measurements are performed using atmospheric mixtures of N2 Ar with concentrations varying from 0 to 79% N2. This strategy permits estimation of detection limits using the different techniques. Pump and probe energy levels are varied independently to study signal dependence on laser irradiance. A theoretical treatment is presented on the basis of the Raman susceptibility equations, which permits the calculation of spectra for all three techniques. Calculated Q‐branch spectra are compared with the measured spectra for the interactions of a linearly polarized probe beam with a linearly or circularly polarized pump beam. The polarizer angle in the detection path for OHD‐RIPS has a dramatic effect on the shape of the spectrum. The calculated and experimental OHD‐RIPS spectra are in good agreement over the entire range of investigated polarizer angles. Detection limits using these techniques are analyzed to suggest their applicability for measuring other species of importance in combustion and plasma systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
An accurate and simple method, Raman peak‐shift simulation, is proposed to determine the characteristics of a laser‐driven shock wave. Using the principle of the Raman peaks shifting at high pressure and the pressure distribution in the gauge layer, the profile of the Raman peak can be numerically simulated. Combined with time‐resolved Raman spectroscopy, some main characteristics of the shock wave were determined. In the experiment, polycrystalline anthracene was used as the pressure gauge. The pump–probe technique was used to obtain the time‐resolved Raman spectra of anthracene under shock loading. The velocity of the shock wave, the peak pressure and the rise time of the shock front were determined by simulating the experimental spectra numerically. The result shows that the method of Raman peak‐shift simulation is effective in obtaining the characteristics of a laser‐driven shock wave. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
To detect trace‐level polycyclic aromatic hydrocarbons, some investigations of an improved self‐assembly method are carried out using gold colloid films for the preparation of the surface‐enhanced Raman scattering (SERS)‐active substrate. Extinction spectra and scanning electron microscopy images reveal that controllable surface plasmonic metal substrates can be obtained by increasing the temperature of (3‐aminopropyl)trimethoxysilane solution up to 64.5 °C. The SERS‐active substrates have a high enhancement factor, and they can be both easily prepared and reproducible. With the use of these substrates, different concentrations of pyrene and anthracene in aqueous solutions were detected by SERS. A further enhancement can be supported by shifted excitation Raman difference spectroscopy. Raman signals of pyrene and anthracene adsorbed on gold colloid substrates up to limits of detection at 5 and 1 nmol/l, respectively, can be obtained. The quantitative analysis shows the possibility of in situ detection of polycyclic aromatic hydrocarbons while such gold colloid film serves as a SERS‐active substrate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Although conventional Raman, surface‐enhanced Raman (SERS) and tip‐enhanced Raman spectroscopy (TERS) have been known for a long time, a direct, thorough comparison of these three methods has never been carried out. In this paper, spectra that were obtained by conventional Raman, SERS (on gold and silver substrates) and TERS (in ‘gap mode’ with silver tips and gold substrates) are compared to learn from their differences and similarities. Because the investigation of biological samples by TERS has recently become a hot topic, this work focuses on biologically relevant substances. Starting from the TER spectra of bovine serum albumin as an example for a protein, the dipeptides Phe–Phe and Tyr–Tyr and the tripeptide Tyr–Tyr–Tyr were investigated. The major findings were as follows. (1) We show that the widely used assumption that spectral bands do not shift when comparing SER, TER and conventional Raman spectra (except due to binding to the metal surface in SERS or TERS) is valid. However, band intensity ratios can differ significantly between these three methods. (2) Marker bands can be assigned, which should allow one to identify and localize proteins in complex biological environments in future investigations. From our results, general guidelines for the interpretation of TER spectra are proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Real‐time polarized Raman spectroscopy was used in this study to measure the molecular orientation evolution during blown film extrusion of low‐density polyethylene (LDPE). Spectra were obtained at different locations along the blown film line, starting from the molten state near the die and extending up to the solidified state near the nip rolls. The trans C C symmetrical stretching vibration of polyethylene (PE) at 1132 cm−1 was analyzed for films possessing uniaxial symmetry. For the given peak, the principal axis of the Raman tensor is coincident with the c‐axis of the orthorhombic crystal, and was used to solve a set of intensity ratio equations to obtain second (〈P2(cosθ)〉) and fourth (〈P4(cosθ)〉) moments of the orientation distribution function. The orientation parameters (P2, P4) were found to increase along the axial distance in the film line even past the frost‐line height (FLH). The P2 values also showed an increasing trend with crystalline evolution during extrusion, consistent with past observations that molecular orientation takes place even after the blown film diameter is locked into place. It was also found that the integral ratio (I1132/I1064) obtained from a single, ZZ‐back‐scattered mode can provide a reasonable estimate of molecular orientation. These results indicate the potential of real‐time Raman spectroscopy as a rapid microstructure monitoring tool for better process control during blown film extrusion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
This paper reports a study of vibrational, structural and morphological properties of molybdenum oxide nanoribbons. Temperature‐dependent Raman spectroscopy measurements in MoO3 nanoribbons revealed morphological changes in the 150–350 °C temperature range. No structural phase transitions were observed, thus showing that the orthorhombic phase is stable from room temperature (nanoribbons) up to 650 °C (bulk‐like phase) where large plates have been formed by the coalescence of the nanoribbons. The interpretation of temperature‐dependent Raman data (wavenumber and linewidths) is supported by scanning electron microscopy that is used to directly probe the morphological changes in MoO3 samples. The observed phenomena in the Raman data for MoO3 nanoribbons can be applied to other nanomaterials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Raman spectroscopic investigation on weak scatterers such as metals is a challenging scientific problem. Technologically important actinide metals such as uranium and plutonium have not been investigated using Raman spectroscopy possibly due to poor signal intensities. We report the first Raman spectrum of uranium metal using a surface‐enhanced Raman scattering‐like geometry where a thin gold overlayer is deposited on uranium. Raman spectra are detected from the pits and scratches on the sample and not from the smooth polished surface. The 514.5‐ and 785‐nm laser excitations resulted in the Raman spectra of uranium metal whereas 325‐nm excitation did not give rise to such spectra. Temperature dependence of the B3g mode at 126 cm−1 is also investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Liquid chromatography and mass spectrometry were time‐consuming and expensive as the main methods for the drug analysis at present, and the samples must be pretreated. The Raman spectroscopy measurement methods were fast and simple, so the Raman spectroscopy methods for the drug analysis were explored in this paper. An optical fiber nano‐probe coated with gold nanoparticles was fabricated and used with surface‐enhanced Raman spectroscopy (SERS) to measure levofloxacin lactate. The resulting SERS spectra of levofloxacin lactate in mouse blood that was detected by the optical fiber nano‐probe clearly showed the characteristic wave numbers of levofloxacin lactate, indicating that optical fiber nano‐probes can be used with spectral techniques to analyze drugs in vitro or potentially even in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
As an important chemosensing material involving hexafluoroisopropanol (HFIP) for detecting nerve agents, para‐HFIP aniline (p‐HFIPA) has been firstly synthesized through a new reaction approach and then characterized by nuclear magnetic resonance and mass spectrometry experiments. Fourier transform infrared absorption spectroscopy (FT‐IR) and FT‐Raman spectra of p‐HFIPA have been obtained in the regions of 4000–500 and 4000–200 cm−1, respectively. Detailed identifications of its fundamental vibrational bands have been given for the first time. Moreover, p‐HFIPA has been optimized and vibrational wavenumber analysis can be subsequently performed via density functional theory (DFT) approach in order to assist these identifications in the experimental FT‐IR and FT‐Raman spectra. The present experimental FT‐IR and FT‐Raman spectra of p‐HFIPA are in good agreement with theoretical FT‐IR and FT‐Raman spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号