首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon carbide is an interesting material for GEN IV fission reactor projects because of its excellent properties. However, these properties will be altered under extreme conditions such as irradiation because of accumulation of damage. Mechanisms playing a role in defect formation require further studies in the case of high energy heavy ion irradiations. In this work a silicon carbide single crystal slice has been implanted with 20 MeV Au ions and probed by using Raman spectrometry. The resulting Raman spectra recorded as a function of depth clearly show a damaged zone, in which the width is in agreement with the projected range of the incident ions (Rp) calculated by using SRIM code. In this area, three damaged zones have been brought to light because of the high spatial resolution of the Raman spectrometry technique. The existence of these zones is discussed with regard to the different energy loss regimes of the implanted ions such as the electronic and nuclear ones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
We have measured polarized Raman spectra of MnWO4 single crystals at low temperatures, and studied the temperature dependence of the various phonon modes. From our Raman studies of the MnWO4, a new transition temperature, ∼180 K, was found. We have completely assigned the symmetries of the 18 observed Raman modes of the MnWO4, as expected from a group theoretical analysis. These Raman modes have been classified into three groups according to weak, intermediate and strong temperature dependence of the modes in each group. Six internal modes have been identified by their weak temperature dependence of the Raman wavenumbers. The temperature dependence of the wavenumbers of the Bg modes in Mg O bonds, modes of intermediate temperature dependence group, shows an anomalous behavior under 50 K. The phonon modes of strong temperature dependence show an anomalous change at ∼180 K in the linewidths. This is believed to be a new transition temperature which involves the changes in the inter‐WO6 octahedra structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Cubic-silicon carbide crystals have been grown from carbon-rich silicon solutions using the travelling-zone method. To improve the growth process, we investigated the effect of controlling more tightly some of the growth parameters. Using such improved growth conditions, our best sample is a 12 mm diameter and 3 mm long 3C–SiC crystal. It is grown on a (0001) 2 off, 6H–SiC seed and has 111-orientation. The low amount of silicon inclusions results in a reduced internal stress, which is demonstrated by the consideration of μ-Raman spectra collected at room temperature on a large number of samples.  相似文献   

4.
In this work, we study the silicon amorphization dependence on the crystal depth induced by 6‐MeV Al2+ ions implanted in the <110> and randomly oriented silicon crystal channels, which was not directly experimentally accessible in the previous similar high‐energy ion–crystal implantation cases. Accordingly, the micro‐Raman spectroscopy scanning measurements along the crystal transversal cross section of the ion implanted region were performed. The ion fluence was 1017 particles/cm2. The scanning steps were 0.2 and 0.3 µm, for the channeling and random ion implantations, respectively. The obtained results are compared with the corresponding Rutherford backscattering spectra of 1.2‐MeV protons in the random and channeling orientations measured during the channeling implantation. Additionally, scanning electron microscope picture was taken on the transversal cross section of the implanted region in the channeling implantation case. We show here that the obtained silicon amorphization maxima are in excellent agreement with the corresponding estimated maxima of the aluminum concentration in silicon. This clearly indicates that the used specific micro‐Raman spectroscopy scanning technique can be successfully applied for the depth profiling of the crystal amorphization induced by high‐energy ion implantation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Low‐temperature Raman study of (001)‐oriented PrFeO3 thin film of around 200 nm thickness deposited on a LaAlO3 (001) substrate by using the pulsed‐laser deposition technique is presented. X‐ray diffraction analysis of this film shows an orthorhombic structure with Pbnm space group. The observed substrate‐induced strain is found to be small. In the room temperature Raman spectra, different Raman modes were observed that were classified according to the orthorhombic structure. All the observed modes show a decrease in wavenumber with rise in temperature, except the B1g mode (624 cm−1) which shows some anomalous behavior. We tried to correlate the variations in linewidth and position with temperature for the observed modes with the octahedral disorder of FeO6. Many possibilities are presented to explain the observed results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
As the silicon industry continues to push the limits of device dimensions, tools such as Raman spectroscopy are ideal to analyze and characterize the doped silicon channels. The effect of inter‐valence band transitions on the zone center optical phonon in heavily p‐type doped silicon is studied by Raman spectroscopy for a wide range of excitation wavelengths extending from the red (632.8 nm) into the ultra‐violet (325 nm). The asymmetry in the one‐phonon Raman lineshape is attributed to a Fano interference involving the overlap of a continuum of electronic excitations with a discrete phonon state. We identify a transition above and below the one‐dimensional critical point (E = 3.4 eV) in the electronic excitation spectrum of silicon. The relationship between the anisotropic silicon band structure and the penetration depth is discussed in the context of possible device applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
An accurate and simple method, Raman peak‐shift simulation, is proposed to determine the characteristics of a laser‐driven shock wave. Using the principle of the Raman peaks shifting at high pressure and the pressure distribution in the gauge layer, the profile of the Raman peak can be numerically simulated. Combined with time‐resolved Raman spectroscopy, some main characteristics of the shock wave were determined. In the experiment, polycrystalline anthracene was used as the pressure gauge. The pump–probe technique was used to obtain the time‐resolved Raman spectra of anthracene under shock loading. The velocity of the shock wave, the peak pressure and the rise time of the shock front were determined by simulating the experimental spectra numerically. The result shows that the method of Raman peak‐shift simulation is effective in obtaining the characteristics of a laser‐driven shock wave. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Reactive ion etching was used to fabricate black‐Si over the entire surface area of 4‐inch Si wafers. After 20 min of the plasma treatment, surface reflection well below 2% was achieved over the 300–1000 nm spectral range. The spikes of the black‐Si substrates were coated by gold, resulting in an island film for surface‐enhanced Raman scattering (SERS) sensing. A detection limit of 1 × 10?6 M (at count rate > 102 s?1 . mW?1) was achieved for rhodamine 6G in aqueous solution when drop cast onto a ~ 100‐nm‐thick Au coating. The sensitivity increases for thicker coatings. A mixed mobile‐on‐immobile platform for SERS sensing is introduced by using dog‐bone Au nanoparticles on the Au/black‐Si substrate. The SERS intensity shows a non‐linear dependence on the solid angle (numerical aperture of excitation/collection optics) for a thick gold coating that exhibits a 10 times higher enhancement. This shows promise for augmented sensitivity in SERS applications.  相似文献   

9.
拉曼光谱法计算多孔硅样品的温度   总被引:2,自引:0,他引:2       下载免费PDF全文
白莹  兰燕娜  莫育俊 《物理学报》2005,54(10):4654-4658
利用457.5nm固体激光器作为激发光源,得到了在不同功率激发下的多孔硅样品的拉曼光谱以及一些谱峰参数随功率的变化关系. 在从前的理论研究中,认为是由于激光功率的增大导致样品局域温度升高,从而使样品局域粒径变小,并由此引起了一系列谱峰参数的变化. 分别由520cm-1和300cm-1附近得到的随功率变化的拉曼谱图,详细讨论并计算了激光功率对多孔硅样品局域温度的定量影响,为拉曼光谱用于样品温度的定量测量奠定了实验基础. 关键词: 拉曼光谱 多孔硅 激光功率 样品温度  相似文献   

10.
We have successfully improved the reproducibility of tip‐enhancement effect on metallized silicon cantilever tips for characterization of carbon nanotubes. Plasmon resonance tuning relative to an excitation wavelength is crucial for efficient tip‐enhancement, which is accomplished by thermal oxidization and subsequent metallization of commercial silicon tips. Because of the change of the refractive index of the tip from silicon to silicon dioxide, the plasmon resonance of the silver‐coated tip is blue‐shifted showing an enormous enhancement at 532 nm excitation. Highly reproducible tips exhibit an enhancement factor of >100 with a 100% yield. Because the tips are fabricated from commercially available silicon cantilever tips in a simple and robust way, our approach provides an important step of ‘tip‐enhanced Raman spectroscopy for everyone’. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Silicon carbide (SiC) single crystals with the 6H polytype structure were irradiated with 4.0-MeV Au ions at room temperature (RT) for increasing fluences ranging from 1?×?1012 to 2?×?1015 cm?2, corresponding to irradiation doses from ~0.03 to 5.3 displacements per atom (dpa). The damage build-up was studied by micro-Raman spectroscopy that shows a progressive amorphization by the decrease and broadening of 6H-SiC lattice phonon peaks and the related growth of bands assigned to Si–Si and C–C homonuclear bonds. A saturation of the lattice damage fraction deduced from Raman spectra is found for ~0.8?dpa (i.e. ion fluence of 3?×?1014 cm?2). This process is accompanied by an increase and saturation of the out-of-plane expansion (also for ~0.8?dpa), deduced from the step height at the sample surface, as measured by phase-shift interferometry. Isochronal thermal annealing experiments were then performed on partially amorphous (from 30 to 90%) and fully amorphous samples for temperatures from 200 °C up to 1500 °C under vacuum. Damage recovery and densification take place at the same annealing stage with an onset temperature of ~200 °C. Almost complete 6H polytype regrowth is found for partially amorphous samples (for doses lower than 0.8 dpa) at 1000 °C, whereas a residual damage and swelling remain for larger doses. In the latter case, these unrelaxed internal stresses give rise to an exfoliation process for higher annealing temperatures.  相似文献   

12.
This paper reports a study of vibrational, structural and morphological properties of molybdenum oxide nanoribbons. Temperature‐dependent Raman spectroscopy measurements in MoO3 nanoribbons revealed morphological changes in the 150–350 °C temperature range. No structural phase transitions were observed, thus showing that the orthorhombic phase is stable from room temperature (nanoribbons) up to 650 °C (bulk‐like phase) where large plates have been formed by the coalescence of the nanoribbons. The interpretation of temperature‐dependent Raman data (wavenumber and linewidths) is supported by scanning electron microscopy that is used to directly probe the morphological changes in MoO3 samples. The observed phenomena in the Raman data for MoO3 nanoribbons can be applied to other nanomaterials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The mode assignment of the cubic phase of anhydrous Na2MoO4 was carried out on the basis of lattice dynamic calculation using the classical rigid‐ion model. Temperature‐dependent studies indicate that this crystal remains in the cubic structure in the 15–773 K range and undergoes a phase transition at around 783 K. The behavior of the Raman modes indicates that this transition is strongly first‐order in nature and the phase above 773 K may have an orthorhombic symmetry. This transition is connected with tilting and/or rotations of the MoO4 tetrahedra, which lead to a disorder at the MoO4 sites. Our results give also evidence that the Mo O bond lengths decrease in the high‐temperature phase. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A comparative, temperature‐dependent (80–500 K at 5 K intervals), micro‐Raman spectroscopic study of 300 and 50 nm diameter ceramic BaTiO3 nanoparticles was carried out with the purpose of elucidating the nanoparticle size effect on the temperature dependence of the polar and non‐polar phonons. A method for calibrating Raman intensities, along with an iterative spectral fitting algorithm, is proposed for concurrent Raman band position and intensity analysis, increasing the analytical abilities of single temperature point Raman spectroscopy. The 300 nm particles exhibit all three phase transitions, whereas the 50 nm particles do not show evidence of these phase transitions in the same temperature range. The Curie temperature appears to be a phonon converging point, irrespective of the phonon symmetry. An attempt was made to qualitatively relate the temperature‐dependent Raman spectra to complimentary non‐spectroscopic methods, such as heat capacity and X‐ray diffraction studies. The study proves that the temperature‐dependent behavior of the polar phonon, 265 cm−1, can be utilized as a sensitive phase transition probe. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
We present a detailed experimental and theoretical Raman investigation of quantum confinement and laser‐induced local thermal effects on hydrogenated nanocrystalline silicon with different nanocrystal sizes (3.6–6.2 nm). The local temperature was monitored by measuring the Stokes/anti‐Stokes peak ratio with the laser power density range from ~120 to 960 kW/cm2. In combination with the three‐dimensional phonon confinement model and the anharmonic effect, which incorporates the three‐phonon and four‐phonon decay processes, we revealed an asymmetrical decay process with wavenumbers ~170 and 350 cm–1, an increasing anharmonic effect with nanocrystal sizes, and a shortening lifetime with enhanced temperature and decreasing nanocrystal dimension. Furthermore, we demonstrated experimentally that for Si nanocrystals smaller than 6 nm, the quantum confinement effect is dominant for the peak shift and line broadening. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This work reports the temperature‐dependent Raman scattering study of mutiferroic BiFeO3 (BFO) bulk ceramics in a wide temperature range of 93–843 K. The polycrystalline samples are sintered at four different temperatures and characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), vibrating sample magnetometry, differential scanning calorimetry (DSC), and optical microscopy. The microstructure shows remarkable changes in terms of grain size and domain pattern as the sintering temperature increases. The DSC curves show prominent exothermic peaks at 645 K, the antiferromagnetic–paramagnetic phase transition temperature. The Raman spectra of all the four specimens reveal strong anomalies in the vicinity of the Neel temperature, which can be attributed to the multiferroic nature of BFO. The Raman scattering studies also reveal considerable spectral changes at a temperature range of 140–200 K in all the specimens, which can be inferred to a further spin–reorientation transition exhibited in BFO at a cryogenic temperature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Raman spectra of microcrystalline silicon layers have been recorded in‐situ during growth. The spectra have been collected under realistic conditions for solar cell deposition. To enable these measurements an electrode with an optical feed through has been developed. By using a metallic grid to shield the feed through it is possible to achieve homogeneous deposition of µc‐Si:H at a sufficient optical transmission. In‐situ Raman measurements were carried out during the deposition of a layer with an intentionally introduced gradient in crystallinity that was seen in‐situ as well in reference measurements performed on the same layer ex‐situ. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Ab initio methods have been used to investigate the properties of Pd as impurity in bulk SiC at five charged states within the framework of density functional theory using the local spin density approximation. It was found that Pd interstitials and substitutionals have similar energy to their intrinsic counterparts. In addition, Pd substitutes for a vacancy, di-vacancy, and tri-vacancy with similar energies. Pd diffuses through SiC via an interstitial mechanism employing the tetrahedral sites and Pd can substitute for Si and C at positive charged states. Removing electrons (p-type doping) from SiC lowers the formation and migration energies of Pd defects in SiC for most configurations.  相似文献   

19.
The aim of this work is to illustrate the power of recently developed methods for measuring resonance Raman scattering (RRS) spectra of efficient fluorophores (using a standard continuous wave excitation and a charge‐coupled device (CCD)‐based Raman spectrometer), by applying them to a detailed study of a specific fluorophore: Nile Blue A. A combination of methods are used to measure the RRS properties of Nile Blue A in water (quantum yield (QY) of 4%) and ethanol (QY of 22%) at excitation wavelengths between 514 and 647 nm, thus covering both pre‐resonance and RRS conditions. Standard Raman measurements are used in situations where the fluorescence background is small enough to clearly observe the Raman peaks, while the recently introduced polarization‐difference RRS and continuously shifted Raman scattering are used closer to (or at) resonance. We show that these relatively straightforward methods allow us to determine the Raman cross‐sections of the most intense Raman peaks and provide an accurate measurement of their line‐width; even for broadenings as low as ∼ 4 cm − 1. Moreover, the obtained Raman excitation profiles agree well with those derived from the optical absorption by a simple optical transform model. This study demonstrates the possibility of routine RRS measurements using standard Raman spectrometers, as opposed to more complicated time‐resolved techniques. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The excellent physical and chemical properties and the radiation hardness of silicon carbide (SiC) render this material particularly suitable for the realization of radiation detectors. In this paper we describe the main properties of SiC and the processes needed to realize good performance detectors. To this purpose, we made SiC Schottky diodes that were electrical characterized by using different techniques. In order to test the radiation hardness, the diodes were irradiated with different ion beams and the analysis of the electrical measurements allowed to identify the defects responsible of the device degradation. These detectors have been used to monitor the multi-MeV ions of the plasma emitted by irradiation of various targets with 300-ps laser at high intensity (1016?W/cm2). These measurements highlighted that the use of SiC detectors enhances the sensitivity to ions detection due to the cutting of the visible and soft ultraviolet radiation emitted from plasma. The small rise time and the proportionality to ion energy evidence that these detectors are a powerful tool for the characterization of ion generated by high-intensity pulsed laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号