首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raman spectroscopy has the potential to differentiate among the various stages leading to high‐grade cervical cancer such as normal, squamous metaplasia, and low‐grade cancer. For Raman spectroscopy to successfully differentiate among the stages, an applicable statistical method must be developed. Algorithms like linear discriminant analysis (LDA) are incapable of differentiating among three or more types of tissues. We developed a novel statistical method combining the method of maximum representation and discrimination feature (MRDF) to extract diagnostic information with sparse multinomial logistic regression (SMLR) to classify spectra based on nonlinear features for multiclass analysis of Raman spectra. We found that high‐grade spectra classified correctly 95% of the time; low‐grade data classified correctly 74% of the time, improving sensitivity from 92 to 98% and specificity from 81 to 96% suggesting that MRDF with SMLR is a more appropriate technique for categorizing Raman spectra. SMLR also outputs a posterior probability to evaluate the algorithm's accuracy. This combined method holds promise to diagnose subtle changes leading to cervical cancer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The techniques of inverse Raman spectroscopy, Raman‐induced polarization spectroscopy (RIPS), and optical heterodyne RIPS (OHD‐RIPS) are compared by probing the Q‐branch of the nitrogen molecule. The signal is measured employing either a photomultiplier tube (low background level–RIPS) or a photodetector (high background level–IRS and OHD‐RIPS). The measurements are performed using atmospheric mixtures of N2 Ar with concentrations varying from 0 to 79% N2. This strategy permits estimation of detection limits using the different techniques. Pump and probe energy levels are varied independently to study signal dependence on laser irradiance. A theoretical treatment is presented on the basis of the Raman susceptibility equations, which permits the calculation of spectra for all three techniques. Calculated Q‐branch spectra are compared with the measured spectra for the interactions of a linearly polarized probe beam with a linearly or circularly polarized pump beam. The polarizer angle in the detection path for OHD‐RIPS has a dramatic effect on the shape of the spectrum. The calculated and experimental OHD‐RIPS spectra are in good agreement over the entire range of investigated polarizer angles. Detection limits using these techniques are analyzed to suggest their applicability for measuring other species of importance in combustion and plasma systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
We report for the first time the tip‐enhancement of resonance Raman scattering using deep ultraviolet (DUV) excitation wavelength. The tip‐enhancement was successfully demonstrated with an aluminum‐coated silicon tip that acts as a plasmonic material in DUV wavelengths. Both the crystal violet and adenine molecules, which were used as test samples, show electronic resonance at the 266‐nm excitation used in the experiments. With results demonstrated here, molecular analysis and imaging with nanoscale spatial resolution in DUV resonance Raman spectroscopy can be realized using the tip‐enhancement effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Time‐resolved Raman spectroscopy, spatially offset Raman spectroscopy and time‐resolved spatially offset Raman spectroscopy (TR‐SORS) have proven their capability for the non‐invasive profiling of deep layers of a sample. Recent studies have indicated that TR‐SORS exhibits an enhanced selectivity toward the deep layers of a sample. However, the enhanced depth profiling efficiency of TR‐SORS, in comparison with time‐resolved Raman spectroscopy and spatially offset Raman spectroscopy, is yet to be assessed and explained in accordance to the synergistic effects of spatial and temporal resolutions. This study provides a critical investigation of the depth profiling efficiency of the three deep Raman techniques. The study compares the efficiency of the various deep Raman spectroscopy techniques for the stand‐off detection of explosive precursors hidden in highly fluorescing packaging. The study explains for the first time the synergistic effects of spatial and temporal resolutions in the deep Raman techniques and their impact on the acquired spectral data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Micro‐probe Raman and far‐infrared absorption spectroscopies were used to prove the existence of optical phonon modes of PbSe nanoparticles prepared by colloidal chemistry and preliminarily characterized by transmission electron microscopy. To the best of our knowledge, this is the first time that evidence of the surface phonon (SP) mode by Raman spectroscopy has been experimentally observed. The wavenumber of the SP mode is consistent with its prediction by a dielectric continuum model. While for different PbSe nanoparticle sizes the observed SP mode does not show any obvious change in its position, there is a clear shift by approximately 4 cm−1 toward higher wavenumber in the appearance of the LO(Γ) in the Raman spectra from the 3 nm to the 7 nm PbSe nanoparticles. Far‐infrared measurements demonstrate the presence of the transverse optical TO(Γ) and of the coupled phonon modes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
光纤技术在近红外光谱仪中的应用   总被引:1,自引:0,他引:1  
探讨了光纤在近红外光谱技术应用中光纤材料选择、能量损耗和使用注意事项等问题。通过把光纤与近红外光谱技术相结合,使得近红外光谱仪从实验室走向现场,可适用于军事恶劣、危险和复杂的环境。为在军事条件下近红外光谱技术的应用提供了更大的空间。  相似文献   

7.
The detection of explosives and their associated compounds for security screening is an active area of research and a wide variety of detection methods are involved in this very challenging area. Surface‐enhanced Raman scattering (SERS) spectroscopy is one of the most sensitive tools for the detection of molecules adsorbed on nano‐scale roughened metal surface. Moreover, SERS combines high sensitivity with the observation of vibrational spectra of species, giving complete information on the molecular structure of material under study. In this paper, SERS was applied to the detection of very small quantities of explosives adsorbed on industrially made substrates. The spectra were acquired with a compact Raman spectrometer. Usually, a high signal‐to‐noise (S/N) spectrum, suitable for identification of explosive molecules down to few hundreds of picograms, was achieved within 30 s. Our measurements suggest that it is possible to exploit SERS using a practical detection instrument for routine analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The spatial resolution in optical imaging is restricted by so‐called diffraction limit, which prevents it to be better than about half of the wavelength of the probing light. Tip‐enhanced Raman spectroscopy (TERS), which is based on the SPP‐induced plasmonic enhancement and confinement of light near a metallic nanostructure, can however, overcome this barrier and produce optical images far beyond the diffraction limit. Here in this article, the basic phenomenon involved in TERS is reviewed, and the high spatial resolution achieved in optical imaging through this technique is discussed. Further, it is shown that when TERS is combined with some other physical phenomena, the spatial resolution can be dramatically improved. Particularly, by including tip‐applied extremely localized pressure in TERS process, it has been demonstrated that a spatial resolution as high as 4 nm could be achieved.  相似文献   

9.
Raman spectroscopy complemented with infrared spectroscopy has been used to study a series of selected natural halogenated carbonates from different origins, including bastnasite, parisite and northupite. The position of CO32− symmetric stretching vibration varies with the mineral composition. An additional band for northupite at 1107 cm−1 is observed. Raman spectra of bastnasite, parisite and northupite show single bands at 1433, 1420 and 1554 cm−1, respectively, assigned to the ν3 (CO3)2− asymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the CaO6 octahedron. No ν2 Raman bending modes are observed for these minerals. The band is observed in the infrared spectra, and multiple ν2 modes at 844 and 867 cm−1 are observed for parisite. A single intense infrared band is found at 879 cm−1 for northupite. Raman bands are observed forthe carbonate ν4 in‐phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite and 714 cm−1 for northupite. Multiple bands are observed in the OH stretching region for selected bastansites and parisites, indicating the presence of water and OH units in the mineral structure. The presence of such bands brings into question the actual formula of these halogenated carbonate minerals. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
We present the first vibrational structure investigation of 3,3,7,7‐tetrakis(difluoramino)octahydro‐1,5‐dinitro‐ 1,5‐diazocine (HNFX)—and, more generally, of a member of the new class of gem‐bis(difluoramino)‐substituted heterocyclic nitramine energetic materials—using combined theoretical and experimental approaches. Optimized molecular structure and vibrational spectra of the Ci… symmetry conformer constituting the HNFX crystal were computed using density functional theory methods. Fourier transform infrared and Raman spectra of HNFX crystalline samples were also collected at ambient temperature and pressure. The average deviation of calculated structural parameters from X‐ray diffraction data is ∼1% at the B3LYP/6‐311 + + G(d,p) level of theory, suggesting the absence of significant molecular distortion induced by the crystal field. Very good agreement was found between simulated and measured spectra, allowing reliable assignment of the fundamental normal modes of vibration of the HNFX crystal. Detailed analysis of the normal modes of the C–(NF2)2 and N–NO2 moieties was performed due to their critical importance in the initial steps of the molecular homolytic fragmentation process. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Extensive far‐infrared studies of inorganic materials and pigments in the early 1960s are highlighted and related to the many subsequent Raman studies of the same materials, studies which led to the formulation of Raman spectral libraries for use in conservation science. The need for complementary infrared/far‐infrared libraries is recognised. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Zinc oxide nanowires with two distinct morphologies were synthesized on silicon substrates using a simple thermal evaporation and vapor transport method in an oxidizing environment. The as‐synthesized nanowires were coated with gold to allow excitation of surface plasmons over a broad frequency range. SERS studies with near‐IR excitation at 785 nm showed significant enhancement (average enhancement > 106) with excellent reproducibility to detect monolayer concentrations of 4‐methylbenzenethiol (4‐MBT) and 1,2‐benzendithiol (1,2‐BDT) probe molecules. The Raman enhancement showed a strong dependence on the gold film thickness, and the peak enhancement was observed for a ∼40‐nm‐thick film. The Raman enhancement was stronger for randomly oriented nanowires compared to aligned ones suggesting the importance of contributions from the junctions of nanowires. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Surface‐enhanced Raman spectroscopy (SERS) has the potential to make a significant impact in biology research due to its ability to provide information orthogonal to that obtained by traditional techniques such as mass spectrometry (MS). While SERS has been well studied for its use in chemical applications, detailed investigations with biological molecules are less common. In addition, a clear understanding of how methodology and molecular characteristics impact the intensity, the number of peaks, and the signal‐to‐noise of SERS spectra is largely missing. By varying the concentration and order of addition of the SERS‐enhancer salt (LiCl) with colloidal silver, we were able to evaluate the impact of these variables on peptide spectra using a quantitative measure of spectra quality based on the number of peaks and peak intensity. The LiCl concentration and order of addition that produced the best SERS spectra were applied to a panel of synthetic peptides with a range of charges and isoelectric points (pIs) where the pI was directly correlated with higher spectral quality. Those peptides with moderate to high pIs and spectra quality scores were differentiated from each other using the improved method and a hierarchical clustering algorithm. In addition, the same method and algorithm was applied to a set of highly similar phosphorylated peptides, and it was possible to successfully classify the majority of peptides on the basis of species‐specific peak differences. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Urolithiasis is a prevalent, disturbing, and highly recurrent disease. Knowing the composition of a urinary stone is important for prevention purposes. Traditional urinary stone analysis methods need large stone fragments for analysis. However, the advancement of ureteroscopic lithotripsy (URSL) has resulted in micro‐stone fragments and unapparently expelled urinary stone powder. In this study, we developed a micro‐Raman spectroscopy (MRS) based diagnosis method for detecting micro‐stones or stone powders in urine after URSL. In our experiment, urine samples of 10 ml each were collected from 12 patients over the fragmented stone site in the ureter after the URSL procedure. The post‐URSL urine sediments extracted from urine were analyzed by MRS. The small urinary stones caught by grasping forceps were analyzed by both MRS and Fourier‐transform infrared (FTIR) spectroscopy. We have identified common urinary stone compositions: calcium oxalate monohydrate (COM), calcium oxalate dihydrate (COD), dicalcium phosphate dihydrate (DCPD), calcium phosphate hydroxide (hydroxyl apatite or HAP), and uric acid, by using a 632.8 nm He‐Ne laser for excitation, a 100× microscope objective lens for irradiation and collection, and a short photobleaching time for fluorescent background reduction. Thus, we developed an MRS‐based method for analyzing the composition of urinary stone powders directly from the urine samples after the URSL procedure. This approach provides a quick and convenient method for urinary stone analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Since the initial introduction of the basic concept almost twenty years ago, two‐dimensional correlation spectroscopy (2DCoS) has become a popular analytical tool applicable to a broad range of science problems. Vibrational spectroscopy remains the major area of 2DCoS applications where infrared spectroscopy is the most popular technique followed by Raman and Near Infrared spectroscopies. An increasing number of publications over the past few years have established Raman 2DCoS as a powerful problem solving technique in protein studies. In this review we provide a critical survey of recent protein studies using the 2DCoS Raman approach. We also analyze common misconceptions and potential pitfalls in the interpretation of 2D correlation data. Over the past decade, there have been a number of publications pointing to artifacts associated with visualization and interpretation of 2D correlation maps. We demonstrate here how some of the ‘artifacts’ of the 2DCoS approach in ‐ reality turn into the strength of the method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Local‐mode and localized surface plasmons generated on the silver thin film can selectively enhance the Raman signal from the surface. Further improvement of surface signal can be obtained by using the polarized Raman technique that results in a dramatic enhancement of the surface sensitivity by up to 25.4 times as compared to that without a silver coating. This technique will be very useful for Raman study on samples that suffer overlapping background signal. In this article, we show that it can be used to significantly improve the signal of thin strained‐Si layer on top of SiGe buffer layer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
An accurate and simple method, Raman peak‐shift simulation, is proposed to determine the characteristics of a laser‐driven shock wave. Using the principle of the Raman peaks shifting at high pressure and the pressure distribution in the gauge layer, the profile of the Raman peak can be numerically simulated. Combined with time‐resolved Raman spectroscopy, some main characteristics of the shock wave were determined. In the experiment, polycrystalline anthracene was used as the pressure gauge. The pump–probe technique was used to obtain the time‐resolved Raman spectra of anthracene under shock loading. The velocity of the shock wave, the peak pressure and the rise time of the shock front were determined by simulating the experimental spectra numerically. The result shows that the method of Raman peak‐shift simulation is effective in obtaining the characteristics of a laser‐driven shock wave. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In‐situ Raman spectroscopy was performed on chemical vapor deposited graphene microbridge (3 μm × 80 μm) under electrical current density up to 2.58 × 108 A/cm2 in ambient conditions. We found that both the G and the G′ peak of the Raman spectra do not restore back to the initial values at zero current, but to slightly higher values after switching off the current through the microbridge. The up‐shift of the G peak and the G′ peak, after switching off the electrical current, is believed to be due to p‐doping by oxygen adsorption, which is confirmed by scanning photoemission microscopy. Both C–O and C=O bond components in the C1s spectra from the microbridge were found to be significantly increased after high electrical current density was flown. The C=O bond is likely the main source of the p‐doping according to our density functional theory calculation of the electronic structure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Mebendazole is a broad spectrum anthelminthic drug, which is widely used in large scale deworming programmes. This active pharmaceutical ingredient exhibits three crystal forms, namely, polymorphs A, B, and C. Therapeutic trials suggested that the most stable form, polymorph A, is inactive. However, the dissolution test normally used as a quality control tool is not able to discriminate among the polymorphs of mebendazole. In this work, the ability of the vibrational spectroscopic techniques (mid and nearinfrared absorption and Raman scattering) for the identification of the crystal form of this compound is evaluated. On the basis of these observations, this methodology is applied to determine the polymorphs of MBZ used in the formulation of the commercial tablets available in the Brazilian and German markets. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Fourier‐transform infrared (FT‐IR), Raman (RS), and surface‐enhanced Raman scattering (SERS) spectra of β‐hydroxy‐β‐methylobutanoic acid (HMB), L ‐carnitine, and N‐methylglycocyamine (creatine) have been measured. The SERS spectra have been taken from species adsorbed on a colloidal silver surface. The respective FT‐IR and RS band assignments (solid‐state samples) based on the literature data have been proposed. The strongest absorptions in the FT‐IR spectrum of creatine are observed at 1398, 1615, and 1699 cm−1, which are due to νs(COOH) + ν(CN) + δ(CN), ρs(NH2), and ν(C O) modes, respectively, whereas those of L ‐carnitine (at 1396/1586 cm−1 and 1480 cm−1) and HMB (at 1405/1555/1585 cm−1 and 1437–1473 cm−1) are associated with carboxyl and methyl/methylene group vibrations, respectively. On the other hand, the strongest bands in the RS spectrum of HMB observed at 748/1442/1462 cm−1 and 1408 cm−1 are due to methyl/methylene deformations and carboxyl group vibrations, respectively. The strongest Raman band of creatine at 831 cm−1w(R NH2)) is accompanied by two weaker bands at 1054 and 1397 cm−1 due to ν(CN) + ν(R NH2) and νs(COOH) + ν(CN) + δ(CN) modes, respectively. In the case of L ‐carnitine, its RS spectrum is dominated by bands at 772 and 1461 cm−1 assigned to ρr(CH2) and δ(CH3), respectively. The analysis of the SERS spectra shows that HMB interacts with the silver surface mainly through the  COO, hydroxyl, and  CH2 groups, whereas L ‐carnitine binds to the surface via  COO and  N+(CH3)3 which is rarely enhanced at pH = 8.3. On the other hand, it seems that creatine binds weakly to the silver surface mainly by  NH2, and C O from the  COO group. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号