共查询到20条相似文献,搜索用时 15 毫秒
1.
FT‐IR and FT‐Raman spectra of p‐bromonitrobenzene (p‐BNB) have been recorded in the region 4000–400 cm−1 and 4000–50 cm−1, respectively. The molecular structure, geometry optimization, vibrational wavenumbers have been investigated. The spectra were interpreted with the aid of normal coordinate analysis based on the density functional theory (DFT) using the standard B3LYP/6‐31G method and basis set combination and was scaled using multiple scale factors yielding good agreement between observed and calculated wavenumbers. The results of the calculations are applied to simulate infrared and Raman spectra of the title compound which showed reasonable agreement with the observed spectra. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
2.
V. Krishnakumar N. Jayamani R. Mathammal K. Parasuraman 《Journal of Raman spectroscopy : JRS》2009,40(11):1551-1556
FTIR and FT Raman spectra of 2‐bromo‐4‐chloro phenol (BCP) and 2‐chloro‐4‐nitro phenol (CNP) were recorded in the region 4000–400 and 4000–50 cm−1, respectively. The molecular structure, geometry optimization, and vibrational wavenumbers were investigated. The spectra were interpreted with the aid of normal coordinate analysis based on density functional theory (DFT) using the standard B3LYP/6‐31G** method and basis set combination and was scaled using multiple scale factors, which yield good agreement between the observed and calculated wavenumbers. The results of the calculations are applied to simulate the infrared and Raman spectra of the title compounds, which showed excellent agreement with the observed spectra. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
3.
The conformational behavior and structural stability of 2‐fluoro‐6‐nitrotoluene (FNT) were investigated by utilizing density functional theory (DFT) with the standard B3LYP/6‐311 + G** method and basis set combinations. The vibrational wavenumbers of FNT were computed at DFT levels and complete vibrational assignments were made on the basis of normal coordinate calculations. Normal coordinate analysis (NCA) has been carried out to support the vibrational analysis. The results were compared with the experimental values. The observed Fourier transform infrared (FTIR) and Fourier transform (FT) Raman vibrational wavenumbers were analyzed and compared with the theoretically predicted vibrational spectra. The results of vibrational spectra of FNT were also compared with the vibrational spectra of some toluene derivatives. The assignments of bands to various normal modes of the molecules were also carried out. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
4.
The spectra of 2,5‐dihydroxybenzoic acid (DHBA) have been recorded using Fourier transform‐infrared spectroscopy (FT‐IR) and FT‐Raman measurements. The total energy calculations of DHBA were evaluated for various possible conformers. The spectra were interpreted with the help of normal coordinate analysis based on density functional theory (DFT) using standard B3LYP/6–31G* method for the most optimized geometry. The effect of intramolecular hydrogen bonding was discussed. Normal coordinate calculations were performed with the DFT force field corrected by a recommended set of scaling factors, yielding fairly good agreement between observed and calculated frequencies. On the basis of the comparison between calculated and experimental results, assignments of fundamental modes were examined. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
Mehmet Karabacak Mehmet Cinar Sahin Ermec Mustafa Kurt 《Journal of Raman spectroscopy : JRS》2010,41(1):98-105
In this work, the Fourier transform infrared and Raman spectra of 2‐bromonicotinic acid and 6‐bromonicotinic acid (abbreviated as 2‐BrNA and 6‐BrNA, C6H4BrNO2) have been recorded in the region 4000–400 and 3500–50 cm−1. The optimum molecular geometry, normal mode wavenumbers, infrared intensities and Raman scattering activities, corresponding vibrational assignments and intermolecular hydrogen bonds were investigated with the help of B3LYP density functional theory (DFT) method using 6‐311++G(d,p) basis set. Reliable vibrational assignments were made on the basis of total energy distribution (TED) calculated with scaled quantum mechanical (SQM) method. From the calculations, the molecules are predicted to exist predominantly as the C1 conformer. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
6.
The solid phase mid‐FTIR and FT‐Raman spectra of 1‐hydroxy naphthalene (HNP) were recorded in the regions 4000–400 and 4000–50 cm, respectively. The spectra were interpreted with the help of normal coordinate analysis following full structure optimization and force field calculations based on the density functional theory (DFT) using the standard B3LYP/6‐31G** method and basis set combination. The results of the calculations were applied to simulate infrared and Raman spectra of the title compound which showed excellent agreement with the observed spectra. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
7.
Gamil A. Guirgis Ikhlas D. Darkhalil Joshua J. Klaassen Arindam Ganguly Justin K. Wyatt James R. Durig 《Journal of Raman spectroscopy : JRS》2012,43(1):116-126
The Raman and infrared spectra (3500–50 cm−1) of the gas, liquid or solution, and solid were recorded of 2,2,3,3,3‐pentafluoropropylamine (CF3CF2CH2NH2) and the ND2 isotopomer. Variable temperature (−55 to − 100 °C) studies of the infrared spectra (3600–400 cm−1) of samples dissolved in liquid xenon have been carried out. From these data, two of the five possible conformers have been identified and their relative stabilities obtained. The enthalpy difference was determined between the more stable Tt conformer and the less stable Tg form to be 280 ± 14 cm−1 (3.35 ± 0.17 kJ/mol). The first indicator is the NCCC dihedral angle (G = gauche or T = trans), and the second one (g = gauche or t = trans) is the relative position of the lone pair of electrons on nitrogen with respect to the β‐carbon. The percentage of the Tg conformer at ambient temperature is estimated to be 34 ± 2%. The conformational stabilities have been predicted from ab initio calculations utilizing several different basis sets up to aug‐cc‐pVTZ for both MP2(full) and density functional theory calculations by the B3LYP method. Vibrational assignments have been provided for most of the observed bands for both isotopomers, supported by MP2(full)/6‐31G(d) ab initio calculations to predict the harmonic force fields, wavenumbers, infrared intensities, Raman activities, and depolarization ratios for both conformers. Estimated r0 structural parameters were obtained from adjusted MP2(full)/6‐311 + G(d,p) calculations. The results are discussed and compared with the corresponding properties of some related molecules. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
A. E. Ledesma J. Zinczuk J. J. Lpez Gonzlez A. Ben Altabef S. A. Brandn 《Journal of Raman spectroscopy : JRS》2010,41(5):587-597
We have synthesized both the 4 and 5 tautomeric forms of 4(5)‐(2′‐furyl)‐imidazole (1) and investigated their molecular vibrations by infrared and Raman spectroscopies as well as by calculation based on the density functional theory (DFT) approach. Examination of the temperature dependence of IR intensity revealed the band characteristics of the 4 and 5 tautomers of (1). Comparison of experimental and calculated chemical shifts in nuclear magnetic resonance (NMR) spectroscopy was made in order to identify the two tautomeric forms. The assignment of vibrational normal modes was performed, and the force field obtained reproduced the experimental vibrational wavenumbers with a root mean‐square deviation (RMSD) value of ca. 13 cm−1 for both tautomers. The natural bond orbital (NBO) study reveals the characteristics of the electronic delocalization of the two tautomeric structures. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
9.
This work deals with the vibrational spectroscopy of 2‐amino‐4,6‐dihydroxy pyrimidine (ADHP) by means of quantum chemical calculations. The mid‐ and far FTIR and FT‐Raman spectra were measured in the condensed state. The fundamental vibrational wavenumbers and intensity of vibrational bands were evaluated using density functional theory (DFT) with the standard B3LYP/6‐311 + G** methods and basis set combinations, and were scaled using various scale factors, which yielded good agreement between the observed and calculated wavenumbers. The vibrational spectra were interpreted with the aid of normal coordinate analysis based on the scaled density functional force field. The results of the calculations were applied to simulate the infrared and Raman spectra of the title compound, which showed excellent agreement with the observed spectra. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
10.
Hema Tresa Varghese C. Yohannan Panicker Daizy Philip 《Journal of Raman spectroscopy : JRS》2007,38(3):309-315
IR, Raman and surface‐enhanced Raman scattering (SERS) spectra of 5‐sulphosalicylic acid were recorded and analysed. The vibrational wavenumbers were computed by density functional theoretical (DFT) method using B3LYP/6–31G* basis. The bands due to the stretching modes CO, C S and SO2 are intense in the SERS spectrum. The C H stretching mode also appears in the SERS spectrum. The molecule is found to adsorb through both the carboxyl and sulphonyl groups. A possible tilted orientation of the molecule is suggested. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
11.
C. D. Contreras M. Montejo J. J. Lpez Gonzlez J. Zinczuk S. A. Brandn 《Journal of Raman spectroscopy : JRS》2011,42(1):108-116
We have studied 2‐(2‐benzofuranyl)‐2‐imidazoline (BFI) and characterized it by using infrared and Raman spectroscopies. The density functional theory (DFT) method together with Pople's basis set shows that two conformers exist for the title molecule as have been theoretically determined in the gas phase and that, probably, an average of both conformations is present in the solid phase. The harmonic vibrational wavenumbers for the optimized geometry of the latter conformer were calculated at the B3LYP/6‐31G* level in the proximity of the isolated molecule. For a complete assignment of the IR and Raman spectra in the compound in the solid phase, DFT calculations were combined with Pulay's scaled quantum mechanics force field (SQMFF) methodology in order to fit the theoretical wavenumbers to the experimental ones. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
12.
G. Cardenas‐Jiron D. Leal B. Matsuhiro I. O. Osorio‐Roman 《Journal of Raman spectroscopy : JRS》2011,42(4):870-878
The tetrasaccharide of 1 → 4β‐D‐mannopyranuronate (MM) and the alternating tetrasaccharide of 1 → 4 b‐D‐mannopyranuronate and 1 → 4α‐L‐gulopyranuronate (MG) were analyzed based on density functional theory (DFT) by employing the Gaussian 03 W package. The molecular geometries were fully optimized by using the Becke's three‐parameter hybrid exchange functional combined with Lee–Yang–Parr correlation functional (B3LYP) and using a 6‐31G(d,p) basis set. The calculated IR spectrum of MM presents a band at 1093 cm−1 for C C stretching vibration, which is in good agreement with the experimental observation (1096 cm−1) for the polymannuronate fraction obtained by partial hydrolysis of sodium alginate extracted from the hybrid brown seaweed Lessonia–Macrocystis. The calculated value at 826 cm−1for MM is in close agreement with the experimental value and confirms that this band is characteristic of polymannuronate blocks. Most of the bands in the IR spectrum are also present in the observed Raman spectrum of the polymannuronate fraction. The experimental IR spectrum of heteropolymeric fraction obtained by partial hydrolysis of sodium alginate shows absorbances similar to those calculated for the model tetrasaccharide (MG). Surface‐enhanced Raman scattering (SERS) allows differentiation between the homopolymeric and heteropolymeric fractions of sodium alginate. The SERS spectrum of the heteropolymeric fraction shows an enhanced signal at 731 cm−1which is present in the calculated Raman spectrum of the tetrasaccharide MG at 729 cm−1. This band is assigned to the ring‐breathing deformation of the β‐D‐mannopyranuronate and α‐L‐gulopyranuronate residues. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
13.
M. K. Subramanian P. M. Anbarasan S. Manimegalai 《Journal of Raman spectroscopy : JRS》2009,40(11):1657-1663
Quantum chemical calculations of energies, geometries and vibrational wavenumbers of 2,4‐difluorophenol (2,4‐DFP) were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6‐311G(d,p) as basis set. The optimized geometrical parameters obtained by HF and DFT calculations are in good agreement with related molecules. The best level of theory in order to reproduce the experimental wavenumbers is the B3LYP method with the 6‐311G(d,p) basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of 2,4‐DFP is also reported. The entropy of the title compound was also performed at HF/6‐311G(d,p) and B3LYP/6‐311G(d,p) levels of theory. The isotropic chemical shift computed by 1H, 13C NMR analyses also shows good agreement with experimental observations. The theoretical spectrograms for FT‐IR and FT‐Raman spectra of the title molecule have been constructed. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
J. Lorenc I. Bryndal M. Marchewka W. Sasiadek T. Lis J. Hanuza 《Journal of Raman spectroscopy : JRS》2008,39(5):569-581
A new organic–organic salt, 2‐aminopyridinium‐4‐hydroxybenzenosulfonate, has been synthesised and characterised by means of FT‐IR and FT‐Raman spectroscopies, differential scanning calorimetry (DSC) and single crystal X‐ray crystallography. Its vibrational spectra have been discussed on the basis of quantum chemical density functional theory (DFT) calculations using the B3LYP/6‐31G(d,p) approach. The role of the intermolecular interactions in this crystal is analysed. The N HċċċO interactions between the hydrogen atoms of the pyridinium cation and oxygen atoms of hydroxybenzenosulfonate anion built the supramolecular arrangement in three‐dimensional space. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
15.
The solid phase Fourier transform infrared (FTIR) and Fourier transform (FT) Raman spectral analysis of 7‐chloro‐3‐methyl‐2H‐1,2,4‐benzothiadiazine 1,1‐dioxide (diazoxide), an antihypertensive agent was carried out along with density functional computations. The optimized geometry, wavenumber and intensity of the vibrational bands of diazoxide were obtained by DFT‐B3LYP level of theory with complete relaxation in the potential energy surface using 6‐31G(d,p) basis set. A complete vibrational assignment aided by the theoretical harmonic frequency analysis has been proposed. The harmonic vibrational wavenumbers calculated have been compared with experimental FTIR and FT Raman spectra. The observed and the calculated wavenumbers are found to be in good agreement. The experimental spectra coincide satisfactorily with those of calculated spectra. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
16.
Tamara V. Basova Vitaly G. Kiselev Britt‐Elfriede Schuster Heiko Peisert Thomas Chass 《Journal of Raman spectroscopy : JRS》2009,40(12):2080-2087
The IR‐ and Raman spectra of copper phthalocyanine (CuPc), as well as the isotopic wavenumber shifts upon 15N substitution in CuPc, were investigated experimentally and theoretically. The symmetry of molecular vibrations was determined using polarized Raman spectra of an oriented CuPc single crystal. Density functional theory (DFT) calculations were used for the detailed assignment of different bands in the vibrational spectra of CuPc. Theoretically predicted geometry, wavenumbers and isotopic shifts are in a very good agreement with the experimental values. A comparison of experimentally obtained isotopic shifts with theoretical predictions allowed us to reveal some characteristic features of normal vibrations of CuPc molecule. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
17.
Hema Tresa Varghese C. Yohannan Panicker Daizy Philip Joydeep Chowdhury Manash Ghosh 《Journal of Raman spectroscopy : JRS》2007,38(3):323-331
IR, Raman and surface enhanced Raman scattering (SERS) spectra of 3,5‐dinitrosalicylic acid (DNSA) were recorded and analysed. The vibrational wavenumbers were computed by the ab initio method using RHF/6–21G* basis and they were found to be in good agreement with the experimental values. The effect of the concentration dependence on the SERS intensity of the molecule was studied. The molecular plane assumes a tilted orientation with respect to the silver surface. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
18.
James R. Durig Ikhlas D. Darkhalil Joshua J. Klaassen Wouter A. Herrebout Johan J. J. Dom Benjamin J. van der Veken 《Journal of Raman spectroscopy : JRS》2012,43(9):1329-1336
The Raman and infrared spectra (4000 to 50 cm–1) of the gas, liquid or solution, and solid have been recorded of n‐propylamine, CH3CH2CH2NH2. Variable temperature (−60 to −100 °C) studies of the Raman (1175 to 625 cm–1) and far infrared (600 to 10 cm–1) spectra dissolved in liquid xenon were carried out. From these data, the five possible conformers were identified and their relative stabilities obtained with enthalpy difference relative to trans–trans (Tt) for trans–gauche (Tg) of 79 ± 9 cm–1 (0.9 ± 0.1 kJ/mol); for Gg of 91 ± 26 cm–1 (1.08 ± 0.3 kJ/mol); for Gg′ of 135 ± 21 cm–1 (1.61 ± 0.2 kJ/mol); for Gt of 143 ± 11 cm–1 (1.71 ± 0.1 kJ/mol). The percentage of the five conformers is estimated to be 18% for the Tt, 24 ± 1% for Tg, 23 ± 3% for Gg, 18 ± 1% for Gg′ and 18 ± 1% for Gt at ambient temperature. The conformational stabilities have been predicted from ab initio calculations utilizing several different basis sets up to aug‐cc‐pVTZ from both second‐order Møller–Plesset (MP2, full) and density functional theory calculations by the Becke, three‐parameter, Lee–Yang–Parr method. Vibrational assignments were provided for the observed bands for all five conformers, which are supported by MP2(full)/6‐31G(d) ab initio calculations to predict harmonic force constants, wavenumbers, infrared intensities, Raman activities and depolarization ratios for both conformers. Estimated r0 structural parameters were obtained from adjusted MP2(full)/6‐311+G(d,p) calculations. The results are discussed and compared with the corresponding properties of some related molecules. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
19.
The experimental and theoretical study on the structures and vibrations of 5‐fluoro‐salicylic acid and 5‐chloro‐salicylic acid (5‐FSA and 5‐ClSA, C7H5FO3 and C7H5ClO3) is presented. The Fourier transform infrared spectra (4000–400 cm−1) and the Fourier transform Raman spectra (4000–50 cm−1) of the title molecules in the solid phase were recorded. The molecular structures, vibrational wavenumbers, infrared intensities, Raman intensities and Raman scattering activities were calculated for a pair of molecules linked by the intermolecular O H···O hydrogen bond. The geometrical parameters and energies of 5‐FSA and 5ClSA were obtained for all eight conformers/isomers from density functional theory (DFT) (B3LYP) with 6‐311++G(d,p) basis set calculations. The computational results identified the most stable conformer of 5‐FSA and 5‐ClSA as the C1 form. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The spectroscopic and theoretical results were compared with the corresponding properties for 5‐FSA and 5‐ClSA monomers and dimer of C1 conformer. The optimized bond lengths, bond angles and calculated wavenumbers showed the best agreement with the experimental results. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
20.
V. K. Rastogi M. A. Palafox L. Mittal N. Peica W. Kiefer K. Lang S. P. Ojha 《Journal of Raman spectroscopy : JRS》2007,38(10):1227-1241
FTIR and FT‐Raman spectra of 5‐bromouracil in the powder form were recorded in the region 400–4000 cm−1 and 50–4000 cm−1, respectively. The observed wavenumbers were analysed and assigned to different normal modes of vibration of the molecule. Quantum chemical calculations were performed to support the assignments of the observed wavenumbers. The performance of the B3LYP hybrid density functional (DFT) method was compared with other methods. With the 6–31 G** and 6–311 + G(2d,p) basis sets, the calculated geometry, dipole moments and harmonic vibrations were determined. A comparison with the uracil molecule was made, and specific scale factors were deduced and employed in the predicted wavenumbers of 5‐bromouracil. The total atomic charges and thermodynamic parameters were calculated, and are discussed briefly. Structure and harmonic vibrations of 5‐bromouracil were also calculated in the presence of water within a simple model with one molecule. It is observed that the bromine atom at position 5 exhibits smaller inductive effects than the fluorine atom, producing a small distortion of the electrostatic potential around the ring and a reduction of the molecular dipole moment. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献