共查询到20条相似文献,搜索用时 0 毫秒
1.
Li Yuan Wulian Chen Jing Li Jianhua Hu Jianjun Yan Dong Yang 《Journal of polymer science. Part A, Polymer chemistry》2012,50(21):4579-4588
A series of well‐defined amphiphilic triblock copolymers, poly(ethylene glycol)‐b‐poly(tert‐butyl acrylate)‐b‐poly(2‐hydroxyethyl methacrylate) (PEG‐b‐PtBA‐b‐PHEMA), were synthesized via successive atom transfer radical polymerization (ATRP). ATRP of tBA was first initiated by PEG‐Br macroinitiator using CuBr/N,N,N′,N″,N′″‐pentamethyldiethylenetriamine as catalytic system to give PEG‐b‐PtBA diblock copolymer. This copolymer was then used as macroinitiator to initiate ATRP of HEMA, which afforded the target triblock copolymer, PEG‐b‐PtBA‐b‐PHEMA. The critical micelle concentrations of obtained amphiphilic triblock copolymers were determined by fluorescence spectroscopy using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of formed aggregates were investigated by transmission electron microscopy and dynamic light scattering, respectively. Finally, an acid‐sensitive PEG‐b‐PtBA‐b‐P(HEMA‐CAD) prodrug via cis‐aconityl linkage between doxorubicin and hydroxyls of triblock copolymers with a high drug loading content up to 38%, was prepared to preliminarily explore the application of triblock copolymer in drug delivery. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
2.
Tao Wu Ying Mei Chang Xu H. C. Michelle Byrd Kathryn L. Beers 《Macromolecular rapid communications》2005,26(13):1037-1042
Summary: Block copolymers of poly(ethylene oxide‐block‐2‐hydroxypropyl methacrylate) (PEO‐b‐PHPMA) with a range of molecular masses of the PHPMA block were obtained by controlled radical polymerization on a chip (CRP chip) using a PEO macroinitiator. A series of well‐controlled polymerizations were carried out at different pumping rates or reaction times with a constant ratio of monomer to initiator. The stoichiometry of the reactants was also adjusted by varying relative flow rates to change the reactant concentrations.
3.
Baris Kiskan Demet Colak Ali Ekrem Muftuoglu Ioan Cianga Yusuf Yagci 《Macromolecular rapid communications》2005,26(10):819-824
Summary: Thermally curable benzoxazine ring‐containing polystyrene macromonomers were synthesized and characterized. 1,4‐Dibromo‐2,5‐bis(bromomethyl)benzene and 1,4‐dibromo‐2‐(bromomethyl)benzene were used as initiators in the atom transfer radical polymerization of styrene. The resulting polymers were used in combination with 3‐aminophenylboronic acid hemisulfate, for a Suzuki coupling. The obtained polymers, with amino groups in the middle or end of the chains, were reacted with formaldehyde and phenol to yield benzoxazine ring‐containing macromonomers. In addition to the glass transition temperature of the polystyrene segment observed at ca. 105 °C, differential scanning calorimetry thermograms exhibit an exotherm at ca. 276 °C corresponding to the oxazine thermal polymerization. Both macromonomers undergo thermal curing with the formation of thermosets having polystyrene segments.
4.
Zhiping Peng Guangzhao Li Xinxing Liu Zhen Tong 《Journal of polymer science. Part A, Polymer chemistry》2008,46(17):5869-5878
A doubly hydrophilic triblock copolymer of poly(N,N‐dimethylamino‐2‐ethyl methacrylate)‐b‐Poly(ethylene glycol)‐b‐poly(N,N‐dimethylamino‐2‐ethylmethacrylate) (PDMAEMA‐b‐PEG‐b‐PDMAEMA) with well‐defined structure and narrow molecular weight distribution (Mw/Mn = 1.21) was synthesized in aqueous medium via atom transfer radical polymerization (ATRP) of N,N‐dimethylamino‐2‐ethylmethacrylate (DMAEMA) initiated by the PEG macroinitiator. The macroinitiator and triblock copolymer were characterized with 1H NMR and gel permeation chromatography (GPC). Fluorescence spectroscopy, dynamic light scattering (DSL), transmittance measurement, and rheological characterization were applied to investigate pH‐ and temperature‐induced micellization in the dilute solution of 1 mg/mL when pH > 13 and gelation in the concentrated solution of 25 wt % at pH = 14 and temperatures beyond 80 °C. The unimer of Rh = 3.7 ± 0.8 nm coexisted with micelle of Rh = 45.6 ± 6.5 nm at pH 14. Phase separation occurred in dilute aqueous solution of the triblock copolymer of 1 mg/mL at about 50 °C. Large aggregates with Rh = 300–450 nm were formed after phase separation, which became even larger as Rh = 750–1000 nm with increasing temperature. The gelation temperature determined by rheology measurement was about 80 °C at pH 14 for the 25 wt % aqueous solution of the triblock copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5869–5878, 2008 相似文献
5.
Gaël Laruelle Erwan Nicol Bruno Ameduri Jean‐François Tassin Noureddine Ajellal 《Journal of polymer science. Part A, Polymer chemistry》2011,49(18):3960-3969
Block copolymers based on poly(vinylidene fluoride), PVDF, and a series of poly(aromatic sulfonate) sequences were synthesized from controlled radical polymerizations (CRPs). According to the aromatic monomers, appropriate techniques of CRP were chosen: either iodine transfer polymerization (ITP) or atom transfer radical polymerization (ATRP) from PVDF‐I macromolecular chain transfer agents (CTAs) or PVDF‐CCl3 macroinitiator, respectively. These precursors were produced either by ITP of VDF with C6F13I or by radical telomerization of VDF with chloroform, respectively. Poly(vinylidene fluoride)‐b‐poly(sodium styrene sulfonate), PVDF‐b‐PSSS, block copolymers were produced from both techniques via a direct polymerization of sodium styrene sulfonate (SSS) monomer or an indirect way with the use of styrene sulfonate ethyl ester (SSE) as a protected monomer. Although the reaction led to block copolymers, the kinetics of ITP of SSS showed that PVDF‐I macromolecular CTAs were not totally efficient because a limitation of the CTA consumption (56%) was observed. This was probably explained by both the low activity of the CTA (that contained inefficient PVDF‐CF2CH2? I) and a fast propagation rate of the monomer. That behavior was also noted in the ITP of SSE. On the other hand, ATRP of SSS initiated by PVDF‐CCl3 was more controlled up to 50% of conversion leading to PVDF‐b‐PSSS block copolymer with an average number molar mass of 6000 g·mol?1. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
6.
A PTFE film surface was modified using a combined plasma/ozone‐activated process. The modified PTFE film was further reacted with 2‐bromoisobutyryl bromide to incorporate ATRP initiators in the film surface. Surface‐initiated ATRP on PTFE films was performed using sodium styrene sulfate as a monomer. The poly(sodium styrene sulfate) chain length grafted onto PTFE film surfaces increased with increasing reaction time. Analysis using X‐ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and a contact angle analyzer gave evidence of the success of the PTFE surface modifications.
7.
Wenling Zhang Jinlin He Zhuang Liu Peihong Ni Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2010,48(5):1079-1091
A series of well‐defined amphiphilic triblock copolymers [polyethylene glycol monomethyl ether]‐block‐poly(ε‐caprolactone)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] (mPEG‐b‐PCL‐b‐PDMAEMA or abbreviated as mPEG‐b‐PCL‐b‐PDMA) were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization. The chemical structures and compositions of these copolymers have been characterized by Fourier transform infrared spectroscopy, 1H NMR, and thermogravimetric analysis. The molecular weights of the triblock copolymers were obtained by calculating from 1H NMR spectra and gel permeation chromatography measurements. Subsequently, the self‐assembly behavior of these copolymers was investigated by fluorescence probe method and transmission electron microscopy, which indicated that these amphiphilic triblock copolymers possess distinct pH‐dependent critical aggregation concentrations and can self‐assemble into micelles or vesicles in PBS buffer solution, depending on the length of PDMA in the copolymer. Agarose gel retardation assays demonstrated that these cationic nanoparticles can effectively condense plasmid DNA. Cell toxicity tests indicated that these triblock copolymers displayed lower cytotoxicity than that of branched polyethylenimine with molecular weight of 25 kDa. In addition, in vitro release of Naproxen from these nanoparticles in pH buffer solutions was conducted, demonstrating that higher PCL content would result in the higher drug loading content and lower release rate. These biodegradable and biocompatible cationic copolymers have potential applications in drug and gene delivery. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1079–1091, 2010 相似文献
8.
A series of well‐defined rod‐coil PAA‐b‐DPS block copolymers, containing Fréchet‐type dendronized polystyrene (DPS) with different generation as a rod‐like hydrophobic block and poly(acrylic acid) (PAA) as a hydrophilic coil were synthesized. The procedure included the following steps: the precursor PMA‐b‐DPS copolymer was prepared through ATRP of Fréchet‐type dendritic styrene macromonomer bearing the first to the third generation (G1–G3), respectively, initiated by poly(methyl acrylate) (PMA‐Br). Then, by converting PMA into PAA by subsequent hydrolysis, the targeted amphiphilic copolymers were obtained. Moreover, by using the rod‐coil amphiphiles as building blocks, large compound micelles and vesicles were formed in a binary solvent mixture of DMF/H2O. Morphological changes in self‐assembly showed dependence on the length of the dendronized block.
9.
Zhigang Xue Zhen Wang Dan He Xingping Zhou Xiaolin Xie 《Journal of polymer science. Part A, Polymer chemistry》2016,54(5):611-620
Cationic emulsions of triblock copolymer particles comprising a poly(n‐butyl acrylate) (PnBA) central block and polystyrene (PS) outer blocks were synthesized by activator generated by electron transfer (AGET) atom transfer radical polymerization (ATRP). Difunctional ATRP initiator, ethylene bis(2‐bromoisobutyrate) (EBBiB), was used as initiator to synthesize the ABA type poly(styrene‐b‐n‐butyl acrylate‐b‐styrene) (PS‐PnBA‐PS) triblock copolymer. The effects of ligand and cationic surfactant on polymerizations were also discussed. Gel permeation chromatography (GPC) was used to characterize the molecular weight (Mn) and molecular weight distribution (MWD) of the resultant triblock copolymers. Particle size and particle size distribution of resulted latexes were characterized by dynamic light scattering (DLS). The resultant latexes showed good colloidal stability with average particle size around 100–300 nm in diameter. Glass transition temperature (Tg) of copolymers was studied by differential scanning calorimetry (DSC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 611–620 相似文献
10.
O. Altintas B. Yankul G. Hizal U. Tunca 《Journal of polymer science. Part A, Polymer chemistry》2006,44(21):6458-6465
We report a simple preparation of three‐armed (A3‐type) star polymers based on the arm‐first technique, using a click‐reaction strategy between a well‐defined azide‐end‐functionalized polystyrene, poly(tert‐butyl acrylate), or poly(ethylene glycol) precursor and a trisalkyne‐functional initiator, 1,1,1‐tris[4‐(2‐propynyloxy)phenyl]ethane. The click‐reaction efficiency for A3‐type star formation has been investigated with gel permeation chromatography measurements (refractive‐index detector). The gel permeation chromatography curves have been split with the deconvolution method (Gaussian area), and the efficiency of A3‐type star formation has been found to be 87%. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6458–6465, 2006 相似文献
11.
Xiaodong Ye Jingyi Fei Kui Xu Ruke Bai 《Journal of Polymer Science.Polymer Physics》2010,48(11):1168-1174
Mixed micelles of polystyrene‐b‐poly(N‐isopropylacrylamide) (PS‐b‐PNIPAM) and two polystyrene‐b‐poly(ethylene oxide) diblock copolymers (PS‐b‐PEO) with different chain lengths of polystyrene in aqueous solution were prepared by adding the tetrahydrofuran solutions dropwise into an excess of water. The formation and stabilization of the resultant mixed micelles were characterized by using a combination of static and dynamic light scattering. Increasing the initial concentration of PS‐b‐PEO in THF led to a decrease in the size and the weight average molar mass (〈Mw〉) of the mixed micelles when the initial concentration of PS‐b‐ PNIPAM was kept as 1 × 10?3 g/mL. The PS‐b‐PEO with shorter PS block has a more pronounced effect on the change of the size and 〈Mw〉 than that with longer PS block. The number of PS‐b‐PNIPAM in each mixed micelle decreased with the addition of PS‐b‐PEO. The average hydrodynamic radius 〈Rh〉 and average radius of gyration 〈Rg〉 of pure PS‐b‐PNIPAM and mixed micelles gradually decreased with the increase in the temperature. Both the pure micelles and mixed micelles were stable in the temperature range of 18 °C–39 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1168–1174, 2010 相似文献
12.
Feng Xu Shu‐Zhen Zheng Yan‐Ling Luo 《Journal of polymer science. Part A, Polymer chemistry》2013,51(20):4429-4439
Thermosensitive polylactide‐block‐poly(N‐isopropylacrylamide) (t‐PLA‐b‐PNIPAAm) tri‐armed star block copolymers were synthesized by atom transfer radical polymerization (ATRP) of monomer NIPAAm using t‐PLA‐Cl as macroinitiator. The synthesis of t‐PLA‐Cl was accomplished by esterification of star polylactides (t‐PLA) with 2‐chloropropionyl chloride using trimethylolpropane as a center molecule. FT‐IR, 1H NMR, and GPC analyses confirmed that the t‐PLA‐b‐PNIPAAm star block copolymers had well‐defined structure and controlled molecular weights. The block copolymers could form core‐shell micelle nanoparticles due to their hydrophilic‐hydrophobic trait in aqueous media, and the critical micelle concentrations (CMC) were from 6.7 to 32.9 mg L?1, depending on the system composition. The as‐prepared micelle nanoparticles showed reversible phase changes in transmittance with temperature: transparent below low critical solution temperature (LCST) and opaque above the LCST. Transmission electron microscopy (TEM) observations revealed that the micelle nanoparticles were spherical in shape with core‐shell structure. The hydrodynamic diameters of the micelle nanoparticles depended on copolymer compositions, micelle concentrations and media. MTT assays were conducted to evaluate cytotoxicity of the camptothecin‐loaded copolymer micelles. Camptothecin drug release studies showed that the copolymer micelles exhibited thermo‐triggered targeting drug release behavior, and thus had potential application values in drug controlled delivery. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4429–4439 相似文献
13.
Yansheng Qiu Wei Zhang Yuefang Yan Jian Zhu Zhengbiao Zhang Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2010,48(22):5180-5188
Three tetrafunctional bromoxanthate agents (Xanthate3‐Br, Xanthate2‐Br2, and Xanthate‐Br3) were synthesized. Initiative atom transfer radical polymerizations (ATRP) of styrene (St) or reversible addition fragmentation chain transfer (RAFT) polymerizations of vinyl acetate (VAc) proceeded in a controlled manner in the presence of Xanthate3‐Br, Xanthate2‐Br2, or Xanthate‐Br3, respectively. The miktoarm star‐block copolymers containing polystyrene (PS) and poly(vinyl acetate) (PVAc) chains, PSn‐b‐PVAc4‐n (n = 1, 2, and 3), with controlled structures were successfully prepared by successive RAFT and ATRP chain‐extension experiments using VAc and St as the second monomers, respectively. The architecture of the miktoarm star‐block copolymers PSn‐b‐PVAc4‐n (n = 1, 2, and 3) were characterized by gel permeation chromatography and 1H NMR spectra. Furthermore, the results of the cleavage of PS3‐b‐PVAc and PVAc2‐b‐PS2 confirmed the structures of the obtained miktoarm star‐block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
14.
Xiaohua He Hailiang Zhang Deyue Yan Xiayu Wang 《Journal of polymer science. Part A, Polymer chemistry》2003,41(18):2854-2864
A series of side‐chain liquid‐crystalline (LC) homopolymers of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with different degrees of polymerization were synthesized by atom transfer radical polymerization (ATRP), which were prepared with a wide range of number‐average molecular weights from 5.1 × 103 to 20.6 × 103 with narrow polydispersities of around 1.17. Thermal investigation showed that the homopolymers exhibit two mesophases, a smectic phase, and a nematic phase, and the phase‐transition temperatures of the homopolymers increase clearly with increasing molecular weights. A series of novel LC coil triblock copolymers with narrow polydispersities was synthesized by ATRP, and their thermotropic phase behavior was investigated with differential scanning calorimetry and polarized optical microscopy. The LC coil triblocks were designed to have an LC conformation of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with a wide range of molecular weights from 3.5 × 103 to 1.7 × 104 and the coil conformation of poly(ethylene glycol) (PEG) (number‐average molecular weight: 6000 or 12,000) segment. Their characterization was investigated with 1H NMR, Fourier transform infrared spectra, and gel permeation chromatography. Triblock copolymers exhibited a crystalline phase, a smectic phase, and a nematic phase. The phase‐transition temperatures from the smectic to nematic phase and from the nematic to isotropic phase increased, and the crystallization of PEG depressed with increasing molecular weight of the LC block. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2854–2864, 2003 相似文献
15.
Kun Huang Jian Huang Mugang Pan Guowei Wang Junlian Huang 《Journal of polymer science. Part A, Polymer chemistry》2012,50(13):2635-2640
The amphiphilic A2B star‐shaped copolymers of polystyrene‐b‐[poly(ethylene oxide)]2 (PS‐b‐PEO2) were synthesized via the combination of atom transfer nitroxide radical coupling (ATNRC) with ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP) mechanisms. First, a novel V‐shaped 2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐PEO2 (TEMPO‐PEO2) with a TEMPO group at middle chain was obtained by ROP of ethylene oxdie monomers using 4‐(2,3‐dihydroxypropoxy)‐TEMPO and diphenylmethyl potassium as coinitiator. Then, the linear PS with a bromine end group (PS‐Br) was obtained by ATRP of styrene monomers using ethyl 2‐bromoisobutyrate as initiator. Finally, the copolymers of PS‐b‐PEO2 were obtained by ATNRC between the TEMPO and bromide groups on TEMPO‐PEO2 and PS‐Br, respectively. The structures of target copolymers and their precursors were all well‐defined by gel permeation chromatographic and nuclear magnetic resonance (1H NMR). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
16.
Zhongning Zhang Guowei Wang Junlian Huang 《Journal of polymer science. Part A, Polymer chemistry》2011,49(13):2811-2817
Amphiphilic H‐shaped [poly(ethylene oxide)]3‐polystyrene‐[poly(ethylene oxide)]3(PEO3‐PS‐PEO3) copolymer was synthesized by 2‐methyl‐2‐nitrosopropane (MNP) induced single electron transfer nitroxide radical coupling (SETNRC) using PEO3‐(PS‐Br) as a single precursor. First, the A3B star‐shaped precursor PEO3‐(PS‐Br) was synthesized by atom transfer radical polymerization (ATRP) using three‐arm star‐shaped PEO3‐Br as macro‐initiator. Then, in the presence of Cu(I)Br/Me6TREN, the bromide group at PS end was sequentially transferred into carbon‐centered radical by single electron transfer and then nitroxide radical by reacting with MNP in mixed solvents of dimethyl sulfoxide (DMSO)/tetrahydrofuran (THF), and in situ generated nitroxide radical could again capture another carbon‐centered radical by fast SETNRC to form target PEO3‐PS‐PEO3 copolymer. The MNP induced SETNRC could reach to a high efficiency of 90% within 60 min. After the product PEO3‐PS‐PEO3 was cleaved by ascorbic acid, the SEC results showed that there was about 30% fraction of product formed by single electron transfer radical coupling (SETRC) between carbon‐centered radicals. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
17.
U. Tunca T. Erdogan G. Hizal 《Journal of polymer science. Part A, Polymer chemistry》2002,40(12):2025-2032
An asymmetric difunctional initiator 2‐phenyl‐2‐[(2,2,6,6 tetramethylpiperidino)oxy] ethyl 2‐bromo propanoate ( 1 ) was used for the synthesis of ABC‐type methyl methacrylate (MMA)‐tert‐butylacrylate (tBA)‐styrene (St) triblock copolymers via a combination of atom transfer radical polymerization (ATRP) and stable free‐radical polymerization (SFRP). The ATRP‐ATRP‐SFRP or SFRP‐ATRP‐ATRP route led to ABC‐type triblock copolymers with controlled molecular weight and moderate polydispersity (Mw/Mn < 1.35). The block copolymers were characterized by gel permeation chromatography and 1H NMR. The retaining chain‐end functionality and the applying halide exchange afforded high blocking efficiency as well as maintained control over entire routes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2025–2032, 2002 相似文献
18.
A highly effective drug carrier is constructed by coating folic acid‐terminated poly(ethylene glycol) (PEG‐FA) on single walled carbon nanotubes (SWNTs) in a facile non‐covalent method. The anti‐cancer drug, doxorubicin (DOX), is further loaded on the surface of SWNTs at a very high loading efficiency, 149.3 ± 4.1%. The drug system (DOX/PEG‐FA/SWNTs) exhibits excellent stability under neutral pH conditions such as serum, but dramatically releases DOX at reduced pH typical of the tumour environment and intracellular lysosomes and endosomes. With the help of FA, DOX/PEG‐FA/SWNTs tend to selectively attach onto cancer cells and enter the lysosomes or endosomes by clathrin‐mediated endocytosis. This can greatly improve the pharmaceutical efficiency and reduce potential side effects.
19.
Adam P. Smith Cassandra L. Fraser 《Journal of polymer science. Part A, Polymer chemistry》2002,40(23):4250-4255
The synthesis of polystyrene‐b‐poly(methyl methacrylate) diblock copolymers with a luminescent ruthenium(II) tris(bipyridine) [Ru(bpy)3] complex at the block junction is described. The macroligand precursor, polystyrene bipyridine‐poly(methyl methacrylate) [bpy(PS–H)(PMMA)], was synthesized via the atom transfer radical polymerization of styrene and methyl methacrylate from two independent, sequentially activated initiating sites. Both polymerization steps resulted in the growth of blocks with sizes consistent with monomer loading and narrow molecular weight distributions (i.e., polydispersity index < 1.3). Subsequent reactions with ruthenium(II) bis(bipyridine) dichloride [Ru(bpy)2Cl2] in the presence of Ag+ generated the ruthenium tris(bipyridine)‐centered diblock, which is of interest for the imaging of block copolymer microstructures and for incorporation into new photonic materials. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4250–4255, 2002 相似文献
20.
Zhongyu Li Pengpeng Li Junlian Huang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(15):4361-4371
A well‐defined amphiphilic copolymer brush with poly(ethylene oxide) as the main chain and polystyrene as the side chain was successfully prepared by a combination of anionic polymerization and atom transfer radical polymerization (ATRP). The glycidol was first protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether and then copolymerized with ethylene oxide by the initiation of a mixture of diphenylmethylpotassium and triethylene glycol to give the well‐defined polymer poly(ethylene oxide‐co‐2,3‐epoxypropyl‐1‐ethoxyethyl ether); the latter was hydrolyzed under acidic conditions, and then the recovered copolymer of ethylene oxide and glycidol {poly(ethylene oxide‐co‐glycidol) [poly(EO‐co‐Gly)]} with multiple pending hydroxymethyl groups was esterified with 2‐bromoisobutyryl bromide to produce the macro‐ATRP initiator [poly(EO‐co‐Gly)(ATRP). The latter was used to initiate the polymerization of styrene to form the amphiphilic copolymer brushes. The object products and intermediates were characterized with 1H NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, Fourier transform infrared, and size exclusion chromatography in detail. In all cases, the molecular weight distribution of the copolymer brushes was rather narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), and the linear dependence of ln[M0]/[M] (where [M0] is the initial monomer concentration and [M] is the monomer concentration at a certain time) on time demonstrated that the styrene polymerization was well controlled. This method has universal significance for the preparation of copolymer brushes with hydrophilic poly(ethylene oxide) as the main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4361–4371, 2006 相似文献