首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The formation of superlattices in blends of a series of asymmetric BSV triblock terpolymers and symmetric SV or VC diblock copolymers is investigated with S being polystyrene, B being poly(1,2‐butadiene), V being poly(2‐vinylpyridine), and C being poly(cyclohexyl methacrylate). All of these triblock terpolymers and diblock copolymers by themselves self‐assemble into lamellae. Apart from various core shell morphologies, in these blends some new unexpected superstructures were obtained.

A TEM micrograph of a 50/50 blend of B30S58V with S45V.  相似文献   


2.
Polymeric core–shell microstructures have been constructed through a new method, namely sequential precipitation, which is intrinsically a self‐assembly and phase separation process. High‐quality poly(vinyldene fluoride)–polycarbonate–lithium perchlorate composite films with spherical core–shell microstructures have been prepared and determined to consist of conducting cores and insulating shells. Because of the percolation effect, the resulting materials present a dielectric constant as high as 104–107 at the threshold.

  相似文献   


3.
4.
Summary: Polyaniline nanobelts have been synthesized by a self‐assembly process using the chemical oxidative polymerization of aniline in a surfactant gel. The morphologies of polyaniline nanostructures were characterized by field‐emission scanning electron microscopy and transmission electron microscopy. The effects of the concentrations of cetyltrimethylammonium bromide on the morphologies of polyaniline nanostructures have also been investigated.

A scanning electron microscopy image of polyaniline nanobelts synthesized with 0.12 M cetyltrimethylammonium bromide at −7 °C.  相似文献   


5.
6.
The synthesis of water soluble star‐block copolypeptides and their encapsulation properties are described. The star‐block copolypeptides, obtained by ring‐opening polymerization of amino acid N‐carboxyanhydrides, consist of a PEI core, a hydrophobic polyphenylalanine or polyleucine inner shell, and a negatively charged polyglutamate outer shell. The encapsulation study showed that these water soluble, amphiphilic star‐block copolypeptides could simultaneously encapsulate versatile compounds ranging from hydrophobic to anionic and cationic hydrophilic guest molecules.

  相似文献   


7.
We report a simple procedure to prepare a novel Au‐micelle composite with a core‐shell‐corona structure. This composite is prepared by reduction of tetrachloroauric acid (HAuCl4 · 3H2O) in dilute aqueous solution containing polystyrene‐block‐poly(4‐vinylpyridine) micelles and poly(ethylene oxide)‐block‐poly(4‐vinylpyridine) copolymers. The micelles with a polystyrene core and a poly(4‐vinylpyridine) shell are transformed into Au‐micelle composites with a polystyrene core, a swollen hybrid Au/poly(4‐vinylpyridine) inner shell, and a poly(ethylene oxide) corona by direct physisorption of gold particles with poly(4‐vinylpyridine) chains.

  相似文献   


8.
Summary: Poly(vinyl acetate) chains end‐capped by a Co(acac)2 complex [PVAc‐Co(acac)2] were prepared by bulk cobalt‐mediated radical polymerization (CMRP) of vinyl acetate and used for grafting fullerene (C60) with four PVAc arms at low temperature (30 °C). A photoactive water‐soluble poly(vinyl alcohol)/C60 nanohybrid was then prepared by hydrolysis of the PVAc arms of the nanohybrid. Because of photoactivity and very low cytotoxicity, this type of water‐soluble nanohybrid is very promising for the photodynamic cancer therapy.

Strategy for the preparation of PVAc/C60 nanohybrid and hydrolysis of PVAc/C60 nanohybrid into PVOH/C60 nanohybrid.  相似文献   


9.
Summary: The D ‐glucose imprinted core‐shell nanosphere with an average size of ≈60 to 80 nm showed a significant preference for the binding of D ‐glucose than the non‐imprinted core‐shell nanosphere. Depending on temperature, the binding site in the shell with N‐isopropylacrylamide oligomer underwent a significant change in binding affinity. In addition, the D ‐glucose imprinted core‐shell nanosphere showed a two times higher affinity for D ‐glucose than L ‐glucose, suggesting chiral recognition of the binding site. The core‐shell nanosphere reported here is a good biomimetic model system with a well‐defined morphology, high surface area, and variable binding affinity through a change in temperature.

D ‐glucose imprinted core‐shell nanospheres showed excellent binding over the non‐imprinted core‐shell nanosphere.  相似文献   


10.
We have synthesized a “universal ligand” incorporating a phosphonate surface anchor and a terminal alkyne moiety which binds to TiO2 nanoparticles and exhibits excellent dispersity in organic solvents. The alkyne functionality permits attachment of azide terminated polymer shells using “click” chemistry. Thus TiO2 core nanoparticles have been encapsulated with both polystyrene and poly(t‐butyl acrylate) shells. The TiO2‐poly(t‐butyl acrylate) core shell nanoparticles are amenable to further chemical transformation into TiO2‐poly(acrylic acid) nanoparticles through ester hydrolysis. These TiO2‐polyacrylic acid nanoparticles are dispersible in aqueous solution. The resulting core‐shell nanoparticles have been incorporated as high K dielectric films in capacitor and organic thin film transistor devices and are promising new materials for flexible electronics applications.

  相似文献   


11.
Summary: A high‐molecular‐weight fluorinated poly(aryl ether) with a 4‐bromophenyl pendant group has been synthesized based on a bromo‐bisphenol. A phosphonic acid derivative is readily prepared from this in high conversion yield. The phosphonated polymer possesses excellent thermal, oxidative, and dimensional stability, low methanol permeability, and reasonable proton conductivity, and may be a candidate polymeric electrolyte membrane for fuel cell applications.

Synthesis of a poly(aryl ether) with a phosphonic acid group.  相似文献   


12.
An ultra‐fast fabrication of large‐scale colloidal PCs via spray coating was demonstrated. The latex spheres with hydrophobic core and hydrophilic shell were designed, and the latex shell with abundant COOH groups resulted in strong hydrogen bonding interaction among latex spheres, which boosted latex arrangement during the spray procedure. The resultant samples with area of 7 × 12 cm2 were easily fabricated within 1 min on different substrates. This ultra‐fast fabrication procedure would be of great importance for the practical application of PCs for optic devices and functional coatings.

  相似文献   


13.
Summary: Monodisperse thermosensitive PS‐NIPA core‐shell particles composed of a PS core and a cross‐linked PNIPA shell can be successfully synthesized by a novel method: photoemulsion polymerization. Cryo‐TEM images indicate clearly the core‐shell morphology of the PS‐NIPA particles: A homogeneous regular PNIPA shell has been affixed on the spherical PS core. DLS measurements indicate that the obtained PS‐NIPA latex particles are thermosensitive. The shell of PNIPA networks with different cross‐linking densities can shrink and re‐swell with temperature and the volume transition temperature is around 32 °C in all cases.

Cryo‐TEM image of PS‐NIPA core‐shell particles.  相似文献   


14.
A polystyrene‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) micellar structure with a P2VP core containing 5 nm CdS nanoparticles (NPs) and a PS shell formed in toluene that is a good solvent for PS block undergoes the core‐shell inversion by excess addition of methanol that is a good solvent for P2VP block. It leads to the formation of micellar shell‐embedded CdS NPs in the methanol major phase. The spontaneous crystalline growth of Au NPs on the CdS surfaces positioned at micellar shells without a further reduction process is newly demonstrated. The nanostructure of Au/CdS/PS‐b‐P2VP hybrid NPs is confirmed by transmission electron microscopy, energy‐dispersive X‐ray, and UV‐Vis absorption.

  相似文献   


15.
In this communication, the synthesis, characterization, and properties of highly conductive core–shell nanocomposites of poly(N‐vinylcarbazole) (PNVC)–polypyrrole (PPY) copolymers with multi‐walled carbon nanotubes (MWCNTs) are described. A unique free‐radical coupling reaction between PNVC and PPY cation radicals in chloroform solvent, using feric chloride as an oxidant, in the presence of suspended MWCNTs in the reaction medium, was used for the synthesis of nanocomposite. Field‐emission scanning and transmission electron microscopy studies showed the formation of the core–shell nanocomposite. Raman spectrocopy results as well as thermogravimetric analysis supported the electron microscopic observations. The resulting PNVC–PPY copolymer‐coated MWCNTs showed an unprecedentedly increased value of direct electrical conductivity (bulk) compared to the conductivity of all samples even with pure MWCNTs.

  相似文献   


16.
Supramolecular complexes of a poly(tert‐butoxystyrene)‐block‐polystyrene‐block‐poly(4‐vinylpyridine) triblock copolymers and less than stoichiometric amounts of pentadecylphenol (PDP) are shown to self‐assemble into a core–shell gyroid morphology with the core channels formed by the hydrogen‐bonded P4VP(PDP)complexes. After structure formation, PDP was removed using a simple washing procedure, resulting in well‐ordered nanoporous films that were used as templates for nickel plating.

  相似文献   


17.
A chiral polymeric micelle is described, formed from the self‐assembly of TPPS and PEG114b‐P(4VP)38 in aqueous media based on their electrostatic interaction. The self‐assembly behavior is studied by DLS, SLS, TEM, UV‐vis absorption spectroscopy, and CD spectroscopy. The experimental results indicate that the resultant hybrid spherical micelles with a hybrid P(4VP)/TPPS core and a PEG shell show chiral signatures. In addition, the chiral micelles have a large dimension and biphasic segregated structure because of the formation of H‐aggregates and J‐aggregates in the micellar core.

  相似文献   


18.
Summary: Polyaniline‐vanadium oxide nanocomposite nanosheets with thickness between 10 and 20 nm, and lateral dimensions in the range of hundreds of nanometers to several microns have been synthesized by in situ intercalation polymerization of aniline with layered V2O5 under hydrothermal conditions. The product was characterized by field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR) spectroscopy, and X‐ray diffractometer (XRD). The effects of the concentration of aniline and reaction temperature on the morphologies of polyaniline‐vanadium oxide nanocomposites have also been investigated.

SEM image of tremella‐like polyaniline‐vanadium oxide nanocomposite nanosheets.  相似文献   


19.
20.
Colloidal photonic crystals were prepared from monodisperse core–shell particles. The shell is hereby formed from a functional monomer, such as glycidylmethacrylate or different reactive ester monomers, which can perform chemical reactions and the core from a standard monomer, which yields highly monodisperse colloids. It was possible to crystallize the core–shell particles into artificial opals with excellent optical properties. Reactions on the functional surface of the colloids were carried out, which lead to a dramatic rise in the mechanical stability or to a functionalization of His‐tagged silicatein, which acts as nanoreactor to synthesize and immobilize gold nanoparticles from auric acid onto the core–shell colloids.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号