首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self‐assembly of macromolecules is fundamental to life itself, and historically, these systems have been primitively mimicked by the development of amphiphilic systems, driven by the hydrophobic effect. Herein, we demonstrate that self‐assembly of purely hydrophilic systems can be readily achieved with similar ease and success. We have synthesized double hydrophilic block copolymers from polysaccharides and poly(ethylene oxide) or poly(sarcosine) to yield high molar mass diblock copolymers through oxime chemistry. These hydrophilic materials can easily assemble into nanosized (<500 nm) and microsized (>5 μm) polymeric vesicles depending on concentration and diblock composition. Because of the solely hydrophilic nature of these materials, we expect them to be extraordinarily water permeable systems that would be well suited for use as cellular mimics.  相似文献   

2.
A facile approach is reported to process rod–coil block copolymers (BCPs) into highly ordered nanostructures in a rapid, low‐energy process. By introducing a selective plasticizer into the rod–coil BCPs during annealing, both the annealing temperature and time to achieve thermodynamic equilibrium and highly ordered structures can be decreased. This process improvement is attributed to enhanced chain mobility, reduced rod–rod interaction, and decreased rod–coil interaction from the additive. The novel method is based on kinetically facilitating thermodynamic equilibrium. The process requires no modification of polymer structure, indicating that a wide variety of desired polymer functionalities can be designed into BCPs for specific applications.

  相似文献   


3.
The preparation and aqueous self‐assembly of newly Y‐shaped amphiphilic block polyurethane (PUG) copolymers are reported here. These amphiphilic copolymers, designed to have two hydrophilic poly(ethylene oxide) (PEO) tails and one hydrophobic alkyl tail via a two‐step coupling reaction, can self‐assemble into giant unilamellar vesicles (GUVs) (diameter ≥ 1000 nm) with a direct dissolution method in aqueous solution, depending on their Y‐shaped structures and initial concentrations. More interesting, the copolymers can self‐assemble into various distinct nano‐/microstructures, such as spherical micelles, small vesicles, and GUVs, with the increase of their concentrations. The traditional preparation methods of GUVs generally need conventional amphiphilic molecules and additional complicated conditions, such as alternating electrical field, buffer solution, or organic solvent. Therefore, the self‐assembly of Y‐shaped PUGs with a direct dissolution method in aqueous solution demonstrated in this study supplies a new clue to fabricate GUVs based on the geometric design of amphiphilic polymers.

  相似文献   


4.
A novel rod‐containing block copolymer is constructed by supramacromolecular self‐assembly of α‐cyclodextrin and a triblock copolymer with methoxy polyethylene glycol as the flanking chains and the midterm block alternately connected by 2,2‐dimethylolbutyric acid and isophorone diisocyanate. The assembled rod‐containing block copolymer shows an exciting phenomenon of concentration‐ and pH‐dependent morphological switching of well‐defined nanostructures. In the solutions at pH 9.2, spherical micelles, rod‐like micelles, and hydrogel are observed successively with an increase of the concentration. Notably, the rod‐like micelles are composed of spherical segments due to the combination of the crystalline cores of the spherical micelles. In addition, 1D nanostructures with different curvatures from linear rod‐like micelles (pH 9.2) to ring‐shaped micelles (pH 7.5) can be obtained by controlling the pH values of the assembled systems.

  相似文献   


5.
6.
We report the design and synthesis of new fully biodegradable thermoresponsive amphiphilic poly(γ‐benzyl L ‐glutamate)/poly(ethyl ethylene phosphate) (PBLG‐b‐PEEP) block copolymers by ring‐opening polymerization of N‐carboxy‐γ‐benzyl L ‐glutamate anhydride (BLG? NCA) with amine‐terminated poly(ethyl ethylene phosphate) (H2N? PEEP) as a macroinitiator. The fluorescence technique demonstrated that the block copolymers could form micelles composed of a hydrophobic core and a hydrophilic shell in aqueous solution. The morphology of the micelles as determined by transmission electron microscopy (TEM) was spherical. The size and critical micelle concentration (CMC) values of the micelles showed a decreasing trend as the PBLG segment increased. However, UV/Vis measurements showed that these block copolymers exhibited a reproducible temperature‐responsive behavior with a lower critical solution temperature (LCST) that could be tuned by the block composition and the concentration.  相似文献   

7.
In this article, the synthesis of a series of conjugated rod–rod block copolymers based on poly(3‐hexylthiophene) (P3HT) and poly(phenyl isocyanide) (PPI) building blocks in a single pot is presented. Ni‐catalyzed Grignard metathesis polymerization of 2,5‐dibromo‐3‐hexylthiophene and subsequent addition of 4‐isocyanobenzoyl‐2‐aminoisobutyric acid decyl ester in the presence of Ni(dppp)Cl2 as a single catalyst afford P3HT‐b‐PPI with tunable molecular weights and compositions. In solid state, microphase separation occurred as differential scanning calorimetric analysis of P3HT‐b‐PPI revealed two glass transition temperatures. In solutions, the copolymers can self‐assemble into spherical aggregates with P3HT core and PPI shell in tetrahydrofuran and exhibit amorphous state in CHCl3. However, atomic force microscopy revealed that the block copolymers self‐assemble into nanofibrils on the substrate. These unique features warrant the resultant conjugated rod–rod copolymers' potential study in organic photovoltaic and other electronic devices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2939–2947  相似文献   

8.
Fluorescent vesicles considered as a mimic of natural primitive cells are prepared from poly(3‐hexylthiophene)‐block‐poly(3‐O‐methacryloyl‐D‐galactopyranose) P3HT‐b‐PMAGP copolymers. The unique characteristic of such vesicular nanostructures is their architecture, which comprises a hydrophobic π‐conjugated P3HT wall stabilized by a hydrophilic PMAGP interface featuring glucose units. The results of this work offer a very efficient and straightforward method for engineering well‐controlled fluorescent nanoparticles (without the addition of dyes), which provide an excellent support to the study of carbohydrate‐protein interactions.

  相似文献   


9.
On a roll : Attachment of flexible coils to the middle of a rigid rod generates T‐shaped rod–coil molecules that self‐assemble into layers that roll up to form filled cylindrical and hollow tubular scrolls, depending on the coil length, in the solid state (see picture); the rods are arranged parallel to the layer plane.

  相似文献   


10.
Block copolymers can form a broad range of self‐assembled aggregates. In solution, planar assemblies usually form closed structures such as vesicles; thus, free‐standing sheet formation can be challenging. While most polymer single crystals are planar, their growth usually occurs by uptake of individual chains. Here we report a novel lamella formation mechanism: core‐crystalline spherical micelles link up to form rods in solution, which then associate to yield planar arrays. For the system of poly(ethylene oxide)‐block‐polycaprolactone in water, co‐assembly with homopolycaprolactone can induce a series of morphological changes that yield either rods or lamellae. The underlying lamella formation mechanism was elucidated by electron microscopy, while light scattering was used to probe the kinetics. The hierarchical growth of lamellae from one‐dimensional rod subunits, which had been formed from spherical assemblies, is novel and controllable in terms of product size and aspect ratio.  相似文献   

11.
Herein, a convenient and general method to simultaneously fix and functionalize polymeric vesicles with sulphydryl groups by the co‐self‐assembly of poly(ethylene oxide)‐block‐poly[3‐(triethoxysilyl)propyl methacrylate] (PEO‐b‐PTESPMA) and 3‐mercaptopropyltrialkoxysilane in an aqueous solution is reported. The presence of sulphydryl groups across the vesicle membrane has been confirmed by using an energy‐filtered technique during TEM analysis and by capturing Au nanoparticles.

  相似文献   


12.
Designed polypeptides with controllable folding properties are utilized as supramolecular templates for fabrication of ordered nanoscale molecular and fibrous assemblies of LCPs. The properties of the LCPs as well as the three dimensional conformation of the polypeptide‐scaffold determine how the polymers are arranged in the supramolecular construct, which highly affects the properties of the hybrid material. The ability to control the polypeptide conformation and assembly into fibers provides a promising route for tuning the optical properties of LCPs and for fabrication of complex functional supramolecules with well defined structural properties.

  相似文献   


13.
Water‐soluble cylindrical micelles with an organometallic core are formed by self‐assembly of the first polyferrocenylsilane‐block‐polyacrylate block copolymer, synthesized by anionic polymerization, in water at pH 8. A transmission electron microscopy image of the micelles is shown in the Figure.  相似文献   

14.
ω‐Telechelic poly(p‐phenylene vinylene) species (PPVs) are prepared by living ring‐opening metathesis polymerization of a [2.2]paracyclophane‐1,9‐diene in the presence of Hoveyda–Grubbs 2nd generation initiator, with terminating agents based on N1,N3‐bis(6‐butyramidopyridin‐2‐yl)‐5‐hydroxyisophthalamide (Hamilton wedge), cyanuric acid, PdII–SCS‐pincer, or pyridine moieties installing the supramolecular motifs. The resultant telechelic polymers are self‐assembled into supramolecular block copolymers (BCPs) via metal coordination or hydrogen bonding and analyzed by 1H NMR spectroscopy. The optical properties are examined, whereby individual PPVs exhibit similar properties regardless of the nature of the end group. Upon self‐assembly, different behaviors emerge: the hydrogen‐bonding BCP behaves similarly to the parent PPVs whereas the metallosupramolecular BCP demonstrates a hypsochromic shift and a more intense emission owing to the suppression of aggregation. These results demonstrate that directional self‐assembly can be a facile method to construct BCPs with semiconducting networks, while combating solubility and aggregation.  相似文献   

15.
16.
With the aim of accessing colloidally stable, fiberlike, π‐conjugated nanostructures of controlled length, we have studied the solution self‐assembly of two asymmetric crystalline–coil, regioregular poly(3‐hexylthiophene)‐b‐poly(2‐vinylpyridine) (P3HT‐b‐P2VP) diblock copolymers, P3HT23b‐P2VP115 (block ratio=1:5) and P3HT44b‐P2VP115 (block ratio=ca. 1:3). The self‐assembly studies were performed under a variety of solvent conditions that were selective for the P2VP block. The block copolymers were prepared by using Cu‐catalyzed azide–alkyne cycloaddition reactions of azide‐terminated P2VP and alkyne end‐functionalized P3HT homopolymers. When the block copolymers were self‐assembled in a solution of a 50 % (v/v) mixture of THF (a good solvent for both blocks) and an alcohol (a selective solvent for the P2VP block) by means of the slow evaporation of the common solvent; fiberlike micelles with a P3HT core and a P2VP corona were observed by transmission electron microscopy (TEM). The average lengths of the micelles were found to increase as the length of the hydrocarbon chain increased in the P2VP‐selective alcoholic solvent (MeOH<iPrOH<nBuOH). Very long (>3 μm) fiberlike micelles were prepared by the dialysis of solutions of the block copolymers in THF against iPrOH. Furthermore the widths of the fibers were dependent on the degree of polymerization of the chain‐extended P3HT blocks. The crystallinity and π‐conjugated nature of the P3HT core in the fiberlike micelles was confirmed by a combination of UV/Vis spectroscopy, photoluminescence (PL) measurements, and wide‐angle X‐ray scattering (WAXS). Intense sonication (iPrOH, 1 h, 0 °C) of the fiberlike micelles formed by P3HT23b‐P2VP115 resulted in small (ca. 25 nm long) stublike fragments that were subsequently used as initiators in seeded growth experiments. Addition of P3HT23b‐P2VP115 unimers to the seeds allowed the preparation of fiberlike micelles with narrow length distributions (Lw/Ln <1.11) and lengths from about 100‐300 nm, that were dependent on the unimer‐to‐seed micelle ratio.  相似文献   

17.
18.
The self‐assembled nanostructures of a high‐molecular‐weight rod–coil block copolymer, poly(styrene‐block‐(2,5‐bis[4‐methoxyphenyl]oxycarbonyl)styrene) (PS‐b‐PMPCS), in p‐xylene are studied. The cylindrical micelles, long segmental cylindrical micelle associates, spherical micelles, and spherical micelle associates are observed with increased copolymer concentration. The high molecular weight of PS leads to the entanglement between PS chains from different micelles, which is the force for supramolecular interactions. Short cylindrical micelles are connected end‐to‐end via this supramolecular chemistry to form long segmental cylindrical micelle associates, analogue to the condensation polymerization process, with direction and saturation. On the other hand, spherical micelles assemble via supramolecular chemistry to form spherical micelle associates, yet without any direction due to their isotropic properties.

  相似文献   


19.
Summary: Thermosensitive polymer nanocontainers were formed by self‐assembly of diblock copolymers poly(2‐cinnamoylethyl methacrylate)‐block‐poly(N‐isopropylacrylamide) (PCEMA‐block‐PNIPAM) and subsequent photo‐crosslinking of the PCEMA shells. It was found that the diameter of the nanocontainers ranges from tens of nanometers to thousands of nanometers, depending on the self‐assembly conditions. The phase transition of the nanocontainers takes place at 32 °C; the structural changes are reversible in a heating and cooling cycle.

Schematic illustration of the structural transition behavior of the thermosensitive polymer nanocontainers.  相似文献   


20.
A supramolecular block copolymer is prepared by the molecular recognition of nucleobases between poly(2‐(2‐methoxyethoxy)ethyl methacrylate‐co‐oligo(ethylene glycol) methacrylate)‐SS‐poly(ε‐caprolactone)‐adenine (P(MEO2MA‐co‐OEGMA)‐SS‐PCL‐A) and uracil‐terminated poly(ethylene glycol) (PEG‐U). Because the block copolymer is linked by the combination of covalent (disulfide bond) and noncovalent (A U) bonds, it not only has similar properties to conventional covalently linked block copolymers but also possesses a dynamic and tunable nature. The copolymer can self‐assemble into micelles with a PCL core and P(MEO2MA‐co‐OEGMA)/PEG shell. The size and morphologies of the micelles/aggregates can be adjusted by altering the temperature, pH, salt concentration, or adding dithiothreitol (DTT) to the solution. The controlled release of Nile red is achieved at different environmental conditions.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号