首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Numerical methods are used to analyze the Ginzburg-Landau equations for a superconducting plate carrying transport current in a magnetic field. Critical current is calculated as a function of the applied magnetic field strength for superconducting plates with different thicknesses. The relations between the field dependence of critical current and the distributions of order parameter, magnetic field, and supercurrent in a plate are analyzed. The field-dependent critical currents computed for plates are used to determine the critical current as a function of the applied magnetic field strength and local magnetic field and current distributions for multilayers in parallel magnetic fields. The constituent superconducting layers are assumed to interact only via magnetic field. A simple method is proposed for analyzing the critical states of multilayers in magnetic fields of arbitrary strength, based on elementary transformations of the critical current-density distribution over individual layers in zero applied magnetic field. The method can be used to analyze experimental results.  相似文献   

2.
研究了电子的自旋相关的隧穿和极化。在外加磁场的作用下,自旋向上的电子与自旋向下的电子具有不同的隧穿系数。当电子的自旋方向与磁场方向相反时,其隧穿概率受到磁场的抑制而变小;反之,当两平行时,电子的了隧穿系数增大。这种差异可以用本中定义的自旋极化率来表示。本对不同磁场下的自旋极化率进行了计算,结果也表明当电子的动能较小,这种自旋极化的效应越显。  相似文献   

3.
曹永泽  李国建  王强  马永会  王慧敏  赫冀成 《物理学报》2013,62(22):227501-227501
有无6 T强磁场条件下利用分子束气相沉积方法制备了不同厚度的Fe80Ni20薄膜. 研究发现, 薄膜的面内矫顽力随厚度增加而降低且符合Neel理论; 矩形比随厚度的增加先快速增大后缓慢降低; 6 T磁场抑制了颗粒团聚及异常长大, 并降低了薄膜表面的粗糙度, 这使薄膜的矫顽力要小于无磁场作用的薄膜, 矩形比大于无磁场作用的薄膜; 而且薄膜在垂直于基片表面的6 T磁场作用下由0 T下的面内磁各向异性转变为磁各向同性. 关键词: 强磁场 气相沉积 微观结构 磁性能  相似文献   

4.
磁场对球头阴极二极管特性的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
刘国治 《强激光与粒子束》2004,16(12):1563-1566
 采用全电磁PIC粒子模拟方法研究了磁场对球头阴极二极管物理特性的影响。结果表明外加磁场主要是通过对二极管束流轨迹的改变来影响二极管的物理特性。由于外加磁场将约束其产生电子束的发散,结果使其空间电荷限制电流减小,其值在无外加磁场并且自磁场可以忽略时的空间电荷限制电流值的0.5~1倍范围内。当外加磁场足够强时,束流轨迹主要受外加磁场控制,二极管产生的电子束既不箍缩也不发散。强外加磁场条件下的空间电荷限制电流近似为无外加磁场时的一半;在无外加磁场条件下,在阳极处的束流半径随二极管电压电流的增大而减小,空间电荷限制电流增强因子随束流半径的减小而减小,随二极管电压电流增大而减小。这一系列结果是在二极管电流小于其自箍缩临界电流条件下得到的。  相似文献   

5.
In this study, a magnetorheological (MR) fluid is prepared using carbonyl iron filings and low viscosity lubricating oil. The effects of magnetic field and weight percentage of particles on the viscosity of the MR fluid have been measured using a rotational viscometer. The yield stress under an applied magnetic field was also obtained experimentally. In the absence of an applied magnetic field, the MR fluid behaves as a Newtonian fluid. When the magnetic field is applied, the MR fluid behaves like Bingham plastics with a magnetic field dependent yield stress. Afterward, the results compared with those of CFD simulation of two eccentric cylinders in the MR fluid. Results show that the influences of MR effects, caused by the applied magnetic field, on the model characteristics are significant and not negligible. The viscosity is enhanced by increasing of the magnetic field, eccentricity ratio and weight percentage of suspensions. The MR effects and increasing of weight percentage and eccentricity ratio also provide an enhancement in the yield stresses and required total torque for rotation of inner cylinder. Also the simulation results indicate a good representation of the experiment by the model.  相似文献   

6.
李志伟  杨旭  王海波  刘忻  李发伸 《中国物理 B》2009,18(11):4829-4833
Thin ferromagnetic films with in-plane magnetic anisotropy are promising materials for obtaining high microwave permeability.The paper reports a Mo¨ssbauer study of the field induced in-plane uniaxial anisotropy in electro-deposited FeCo alloy films.The FeCo alloy films were prepared by the electro-deposition method with and without an external magnetic field applied parallel to the film plane during deposition.Vibrating sample magnetometry and Mo¨ssbauer spectroscopy measurements at room temperature indicate that the film deposited in external field shows an in-plane uniaxial anisotropy with an easy direction coinciding with the external field direction and a hard direction perpendicular to the field direction,whereas the film deposited without external field does not show any in-plane anisotropy.Mo¨ssbauer spectra taken in three geometric arrangements show that the magnetic moments are almost constrained in the film plane for the film deposited with applied magnetic field.Also,the magnetic moments tend to align in the direction of the applied external magnetic field during deposition,indicating that the observed anisotropy should be attributed to directional ordering of atomic pairs.  相似文献   

7.
In the framework of the tight-binding model,the excitons states and linear absorption spectra are calculated in the metallic single-walled carbon nanotubes,with the axial magnetic field applied.From our calculations,it is found that for the M_(11) and M_(22) transitions,the exciton states are split into four separate column states by the applied magnetic field due to the symmetry breaking.More interesting is that the splitting can be directly reflected from the linear absorption spectra,which are dominated by four main absorption peaks.In addition,the splitting with increasing the axial magnetic field is also calculated,which increases linearly with the applied magnetic field.The obtained results are expected to be detected by the future experiments.  相似文献   

8.
The analytical solutions of the Schrödinger equation for a square well system subjected to an externally applied tilted magnetic field are obtained and the results are discussed. The dependency of energy spectrum of the system on the externally applied magnetic field direction is discussed.  相似文献   

9.
磁等离子体动力学推力器是空间高功率电推进装置的典型代表,磁等离子体动力学过程是其核心工作机制.为深入理解外磁场对其工作特性的影响,本文采用粒子云(particle in cell,PIC)方法结合基于自相似准则的缩比模型,进行外加磁场作用下磁等离子体动力学推力器工作过程的建模仿真,通过与实验结果对比验证模型和方法的可靠性,并重点分析推力器点火启动过程的等离子特性参数分布,以及外磁场和阴极电流对推力器工作性能的影响.研究结果表明:阴阳极放电电弧构建是推力器启动和高效工作的关键步骤;外磁场强度较低工况不利于构建稳定放电电弧,等离子体束流集中于轴线附近,推力主要产生机制是自身场加速;外磁场强度较高时,阴阳极放电电弧稳定,推力产生主要机制是涡旋加速,推力、比冲随外磁场强度线性增大;推力器效率随阴极电流和外磁场强度增大而增大;放电电压随阴极电流增大而增大,但随外磁场强度的增大表现出先减小后增大的趋势.  相似文献   

10.
磁等离子体动力学推力器是空间高功率电推进装置的典型代表,磁等离子体动力学过程是其核心工作机制.为深入理解外磁场对其工作特性的影响,本文采用粒子云(particle in cell,PIC)方法结合基于自相似准则的缩比模型,进行外加磁场作用下磁等离子体动力学推力器工作过程的建模仿真,通过与实验结果对比验证模型和方法的可靠性,并重点分析推力器点火启动过程的等离子特性参数分布,以及外磁场和阴极电流对推力器工作性能的影响.研究结果表明:阴阳极放电电弧构建是推力器启动和高效工作的关键步骤;外磁场强度较低工况不利于构建稳定放电电弧,等离子体束流集中于轴线附近,推力主要产生机制是自身场加速;外磁场强度较高时,阴阳极放电电弧稳定,推力产生主要机制是涡旋加速,推力、比冲随外磁场强度线性增大;推力器效率随阴极电流和外磁场强度增大而增大;放电电压随阴极电流增大而增大,但随外磁场强度的增大表现出先减小后增大的趋势.  相似文献   

11.
The phase transitions and the internal aggregate structures of a highly dense suspension composed of magnetic plate-like particles with a magnetic moment normal to the particle axis have been investigated by means of the Monte Carlo method. The present study considered a quasi-2D system in order to clarify the influences of the volumetric fraction of particles and the magnetic field strength on particle aggregations and phase transitions. The internal structures of particle aggregates have been discussed quantitatively in terms of pair correlation functions, orientational pair correlation functions, nematic and polar order parameters. The main results obtained here are summarized as follows. When the influence of the magnetic interaction between particles is of the same order of that of the perpendicular magnetic field strength, the particles form column-like clusters, and the internal structure of the suspension shows solid-like structures. For the case of a strong applied magnetic field, the internal structure is transformed from solid-like structures into isotropic ones. However, as the volumetric fraction increases, the particles form brick wall-like structures under the situation of a strong applied magnetic field, and the internal structure exhibits solid-like ones. The brick wall-like structures also appear for a relatively weak magnetic field applied along the in-plane direction despite a slightly smaller volumetric fraction compared with the case of the perpendicular applied magnetic field.  相似文献   

12.
When fluid saturated porous media are subjected to an applied uniform magnetic field, an internal magnetic field, inside the pore space, is induced due to magnetic susceptibility differences between the pore-filling fluid and the solid matrix. The microscopic distribution of the internal magnetic field, and its gradients, was simulated based on the thin-section pore structure of a sedimentary rock. The simulation results were verified experimentally. We show that the 'decay due to diffusion in internal field' magnetic resonance technique may be applied to measure the pore size distribution in partially saturated porous media. For the first time, we have observed that the internal magnetic field and its gradients in porous rocks have a Lorentzian distribution, with an average gradient value of zero. The Lorentzian distribution of internal magnetic field arises from the large susceptibility contrast and an intrinsic disordered pore structure in these porous media. We confirm that the single exponential magnetic resonance free induction decay commonly observed in fluid saturated porous media arises from a Lorentzian internal field distribution. A linear relationship between the magnetic resonance linewidth, and the product of the susceptibility difference in the porous media and the applied magnetic field, is observed through simulation and experiment.  相似文献   

13.
In this paper we introduce gravitomagnetic field equations into the investigation of gravitomagnetic effects on a superconductor. We point out that in the absence of an applied magnetic field, an applied gravitomagnetic field will induce twin currents, gravitational and electric supercurrents. The latter will create a magnetic field. The slightly modified Josephson, London, and London-type gravitomagnetic equations are obtained. Some applications of these equations are discussed.  相似文献   

14.
Using the Nikiforov–Uvarov (NU) method, the energy levels and the wave functions of an electron confined in a two-dimensional (2D) pseudoharmonic quantum dot are calculated under the influence of temperature and an external magnetic field inside dot and Aharonov–Bohm (AB) field inside a pseudodot. The exact solutions for energy eigenvalues and wave functions are computed as functions of the chemical potential parameters, applied magnetic field strength, AB flux field, magnetic quantum number and temperature. Analytical expression for the light interband absorption coefficient and absorption threshold frequency are found as functions of applied magnetic field and geometrical size of quantum pseudodot. The temperature dependence energy levels for GaAs semiconductor are also calculated.  相似文献   

15.
江强  毛秀娟  周细应  苌文龙  邵佳佳  陈明 《物理学报》2013,62(11):118103-118103
在基底与靶材之间放置磁性强弱不同的永久磁铁来研究外加磁 场对磁控溅射制备氮化硅陷光薄膜的影响. 通过X射线衍射、原子力显微镜 (AFM) 以及紫外分光光度计分别测试了外加磁场前后所制备薄膜的组织结构、表面形貌和光学性能. 结果表明, 外加磁场后, 氮化硅薄膜依然呈现非晶结构; 但是表面形貌发生明显改变, 中心磁场1.50 T下, 薄膜表面为特殊锥状尖峰结构"类金字塔"的突起, 而且这些突起颗粒垂直于基底表面; 在 可见光及近红外范围内, 中心磁场1.50 T 下的薄膜样品平均透射率最大, 平均透射率达到90% 以上, 比未加磁场的样品提高了近1 倍, 具有很好的陷光特性. 关键词: 外加磁场 磁控溅射 氮化硅薄膜 陷光效应  相似文献   

16.
系统研究了在外加诱导磁场下制备的Bi-Mn 6%合金的结构和低温磁特性.结果表明,在外加诱导磁场下制备的Bi-Mn 6%合金呈现典型的双相结构和各向异性特征,MnBi相c轴沿外加诱导磁场方向定向排列.发现MnBi相的矫顽力随温度的升高而增大,而饱和磁化强度则随温度的升高而减小.MnBi相的自旋重定向温度TSR随测量磁场的增大逐渐向低温区移动,在高的外加测量磁场下这种自旋重定向特征消失,发现了TSR随外加诱导制备磁场的增大而逐渐向高温区移动.对磁场诱导制备织构化MnBi相和该类材料磁各向异性能的物理机制进行了分析和讨论.  相似文献   

17.
有限磁场中等离子体圆柱波导的传播特性   总被引:5,自引:0,他引:5       下载免费PDF全文
分析了有耗介质中等离子体圆柱波导在有限外加磁场中的传播特性.重点讨论了波导传播常数随等离子体参数、介质参数和外加磁场的变化.分析结果表明,有限强磁场中的等离子体波导的传播特性比无外磁场或外加磁场为无穷大时具有更强的控制能力. 关键词:  相似文献   

18.
BSCCO/Ag tape superconductors are developed for electrical power applications at liquid nitrogen temperatures. In these applications, e.g., superconducting transformers and power cables, an AC transport current and an AC magnetic field are present at the same time. A set-up to measure the influence of external AC magnetic field on the transport current loss, i.e., the voltage drop across a sample supplied with an AC transport current, has been developed. The magnetic field can be applied both parallel and perpendicular to the broad side of the tape conductor. An increase of the transport current loss due to the external AC magnetic field is observed. When a DC external magnetic field is applied the increase of the self-field loss can be described well by the decrease of the critical current due to the magnetic field. In the case of an AC external magnetic field this is only a minor effect. For magnetic field amplitudes higher than a certain threshold value the transport current loss is described reasonably well by the self-field loss and a dynamic resistance contribution calculated from the DC voltage–current relation in AC magnetic field.  相似文献   

19.
Experimental observations on a wave packet in a positive column of helium discharge with magnetic fields are reported. The wave packet is a kind of ionization wave and is created by applying voltage pulses to a mesh grid. When an axial non-uniform magnetic field is applied to a positive column, the plasma parameters change inhomogeneously near the magnetic coil. So various characteristics (amplitude, frequency, wavelength and so on) of the wave packet are changed at the both sides of the coil. The wavelength of the wave making up the wave packet varies continuously with a magnetic field. On the contrary, its amplitude and frequency vary remarkable near the magnetic coil, as a strong magnetic field is applied.  相似文献   

20.
Recent development in biomedical engineering has enabled the use of the magnetic nanoparticles in modern drug delivery systems with great utility. Nanofluids composed of magnetic nanoparticles have the characteristics to be manipulated by external magnetic field and are used to guide the particles up the bloodstream to a tumor with magnets. In this study we examine the mixed convective peristaltic transport of copper–water nanofluid under the influence of constant applied magnetic field. Nanofluid is considered in an asymmetric channel. Aside from the effect of applied magnetic field on the mechanics of nanofluid, its side effects i.e. the Ohmic heating and Hall effects are also taken into consideration. Heat transfer analysis is performed in presence of viscous dissipation and heat generation/absorption. Mathematical modeling is carried out using the lubrication analysis. Resulting system of equations is numerically solved. Impact of embedded parameters on the velocity, pressure gradient, streamlines and temperature of nanofluid is examined. Effects of applied magnetic field in presence and absence of Hall effects are studied and compared. Results depict that addition of copper nanoparticles reduces the velocity and temperature of fluid. Heat transfer rate at the boundary enhances by increasing the nanoparticles volume fraction. Increase in the strength of applied magnetic field tends to decrease/increase the velocity/temperature of nanofluid. Further presence of Hall effects reduces the variations brought in the state of fluid when strength of applied magnetic field is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号