首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary: A surfactant's efficiency for a given application is dependent on its chemical structure and physical-chemical properties in solution, including surfactant solubility as a function of concentration and temperature as well as adsorption and aggregation behavior. This review work describes the main physical-chemical properties ascertained by means of various characterization techniques, which can be used to study nonionic surfactants based on poly(ethylene oxide)-block-poly(propylene oxide) (PEO-PPO). Among these, some are widely used and others are relatively new for this type of application.  相似文献   

2.
This paper aims to report the fabrication of biodegradable thin films with micro‐domains of cylindrical nanochannels through the solvent‐induced microphase separation of poly(L ‐lactide)‐block‐poly(ethylene glycol)‐block‐poly(L ‐lactide) (PLA‐b‐PEG‐b‐PLA) triblock copolymers with different block ratios. In our experimental scope, an increase in each of the block lengths of the PLA and PEG blocks led to both a variation in the average number density (146 to 32 per 100 µm2) and the size of the micro‐domains (140 to 427 nm). Analyses by atomic force microscopy (AFM) and fluorescence microscopy indicated that the hydrophilic PEG nanochannels were dispersed in the PLA matrix of the PLA‐b‐PEG‐b‐PLA films. We demonstrated that the micro‐domain morphology could be controlled not only by the block length of PEG, but also by the solvent evaporation conditions.

  相似文献   


3.
All‐polythiophene diblock copolymers, comprising one unsheathed block and one fenced block, were synthesized through catalyst‐transfer polycondensation. The unsheathed block self‐assembles through π‐π stacking, thereby inducing microphase separation. Consequently, we have succeeded in creating a microphase separation comprising an ensemble of stacked and isolated polythiophenes. This achievement could be extended to various unexplored applications as a result of the integration of the contrasting functions of the two blocks.  相似文献   

4.
5.
Summary: Star‐shaped hydroxy‐terminated poly(ε‐caprolactone)s (ssPCL), with arms of different lengths, were obtained by ring‐opening polymerization (ROP) of ε‐caprolactone initiated by pentaerythritol, and were condensed with α‐methyl‐ω‐(3‐carboxypropionyloxy)‐poly(ethylene oxide)s ( = 550–5 000) to afford four‐armed PCL‐PEO star diblock copolymers (ssPCL‐PEO). The polymers were characterized by 1H and 13C NMR spectroscopy and size‐exclusion chromatography (SEC). The melting behavior of ssPCLs was studied by differential scanning calorimetry (DSC). X‐ray diffraction and DSC techniques were used to investigate the crystalline phases of ssPCL‐PEOs.

The part of the synthesis of four‐armed star‐shaped diblock poly(ε‐caprolactone)‐poly(ethylene oxide) copolymers as described.  相似文献   


6.
Numerical self‐consistent field (SCF) lattice computations allow a priori determination of the equilibrium morphology and size of supramolecular structures originating from the self‐assembly of neutral block copolymers in selective solvents. The self‐assembly behavior of poly(ethylene oxide)‐block‐poly‐ε‐caprolactone (PEO‐PCL) block copolymers in water was studied as a function of the block composition, resulting in equilibrium structure and size diagrams. Guided by the theoretical SCF predictions, PEO‐PCL block copolymers of various compositions have been synthesized and assembled in water. The size and morphology of the resulting structures have been characterized by small‐angle X‐ray scattering, cryogenic transmission electron microscopy, and multiangle dynamic light scattering. The experimental results are consistent with the SCF computations. These findings show that SCF is applicable to build up roadmaps for amphiphilic polymers in solution, where control over size and shape are required, which is relevant, for instance, when designing spherical micelles for drug delivery systems © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 330–339  相似文献   

7.
8.
We present a morphological study of the micellization of an asymmetric semicrystalline block copolymer, poly(butadiene)‐block‐poly(ethylene oxide), in the selective solvent n‐heptane. The molecular weights of the poly(butadiene) (PB) and poly(ethylene oxide) (PEO) blocks are 26 and 3.5 kg · mol−1, respectively. In this solvent, micellization into a liquid PEO‐core and a corona of PB‐chains takes place at room temperature. Through a thermally controlled crystallization of the PEO core at −30 °C, spherical micelles with a crystalline PEO core and a PB corona are obtained. However, crystallization at much lower temperatures (−196 °C; liquid nitrogen) leads to the transition from spherical to rod‐like micelles. With time these rod‐like micelles aggregate and form long needles. Concomitantly, the degree of crystallinity of the PEO‐cores of the rod‐like micelles increases. The transition from a spherical to a rod‐like morphology can be explained by a decrease of solvent power of the solvent n‐heptane for the PB‐corona chains: n‐Heptane becomes a poor solvent at very low temperatures leading to a shrinking of the coronar chains. This favors the transition from spheres to a morphology with a smaller mean curvature, that is, to a cylindrical morphology.

  相似文献   


9.
Novel wormlike nanostructures were self‐assembled in bulk films of a well defined diblock copolymer with azobenzene moieties, which was prepared by atom transfer radical polymerization (ATRP). For comparison, a homopolymer with almost the same repeat units of azobenzene as those in the copolymer was also prepared. They both had well defined structures and exhibited a smectic liquid crystalline phase. Upon annealing the copolymer films, poly(methyl methacrylate) formed a matrix with excellent optical properties, and the azobenzene segment in the minority phase self‐assembled into a wormlike mesogenic domain in the bulk films. Such block copolymer films exhibited stability and transparency by eliminating the scattering of visible light, indicating their potential application as photoresponsive functional materials. Although wormlike morphologies have been obtained in micelles from block copolymer solutions, to the best of our knowledge, such wormlike nanostructures have never been explored in bulk films.

  相似文献   


10.
Summary: Amphiphilic triblock copolymers (PEOxb‐PDMSyb‐PEOx) with different block lengths were synthesized and multi‐morphological complex crew‐cut, star‐like, and short‐chain aggregates were prepared by self‐assembly of the given copolymers. The morphologies and dimensions of the aggregates can be well controlled by variation of the preparation conditions. TEM, SEM, FFR‐TEM, and LLS studies show the resulting morphologies range from LCMs, unilamellar or multilayer vesicles, LCVs, porous spheres to nanorods.

TEM images of the vesicles formed from PEO‐b‐PDMS‐b‐PEO.  相似文献   


11.
Although high‐boiling non‐solvent induced macrophase separation in emulsion droplets has been widely applied for the fabrication of polymeric capsules, precise control of their structures remains a great challenge. Herein, block copolymer capsules with tunable shell structures were fabricated by employing a non‐solvent as a liquid template in emulsion droplets. The properties of the non‐solvents dictate the phase separation sequence in the droplets and the capsule formation mechanism. Two different pathways for capsule formation were observed, and could be applied to predict the shell structure. The structured capsules could be transformed into mesoporous capsules, which demonstrated an intriguing structure‐dependent release behavior. Capsules with spherical shell structures displayed the best permeability, while those with lamellar shell structures showed the slowest release, but with a stepwise profile. After loading with an anticancer drug, different capsules induced different apoptosis ratios in cancer cell studies.  相似文献   

12.
The ability to predict the in vivo performance of multiblock‐copolymer‐based biomaterials is crucial for their applicability in the biomedical field. In this work, XPS analysis of PCL‐PEG copolymers was carried out, as well as morphological and wettability evaluations by SEM and CA measurements, respectively. XPS analysis on films equilibrated in PBS demonstrated a further enrichment in the PEG component on the surface. Copolymer films obtained by casting using different solvents showed a dependence in segregation according to the solvent employed. Cell adhesion tests demonstrated the importance of copolymer segregation and rearrangement in a wet environment, with a dependence of these phenomena on the copolymer molecular weight.

  相似文献   


13.
Novel block copolymers, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide) (P3HT‐b‐PEO) were synthesized via Suzuki coupling reaction of P3HT and PEO homopolymers. The copolymers were characterized by NMR, gel permeation chromatography, differential scanning calorimeter, and UV–vis measurements. A series of devices based on the block copolymers with a fullerene derivative were evaluated after thermal or solvent annealing. The device using P3HT‐b‐PEO showed higher efficiency than using P3HT blend after thermal annealing. Phase‐separated structures in the thin films of block copolymer blends were investigated by atomic force microscopy to clarify the relationship between morphologies constructed by annealing and the device performance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
A PFS/PLA block copolymer was studied to probe the effect of strong surface interactions on pattern formation in PFS block copolymer thin films. Successful synthesis of PFS‐b‐PLA was demonstrated. Thin films of these polymers show phase separation to form PFS microdomains in a PLA matrix, and ultrathin films (<5 nm) formed SINPATs on silicon and mica. The SINPATs consisted of strongly surface‐adsorbed PLA blocks on top of which the PFS blocks dewetted into sphere‐like features. The lateral spacing between these features was regular, and was typically much larger than the length scale associated with regular block copolymer phase separation.

  相似文献   


15.
We prepared two block copolymers 1 and 2 consisting of a third‐generation dendron with poly(ethylene oxide) (PEO) peripheries and a linear polystyrene (PS) coil. The PS molecular weights were 2000 g/mol and 8000 g/mol for 1 and 2 , respectively. The differential scanning calorimetry (DSC) data indicated that neither of the block copolymers showed glass transition, implying that there was no microphase separation between the PEO and PS blocks. However, upon doping the block copolymers with lithium triflate (lithium concentration per ethylene oxide unit = 0.2), two distinct glass transitions were seen, corresponding to the salt‐doped PEO and PS blocks, respectively. The morphological analysis using small angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM) demonstrated that a hexagonal columnar morphology was induced in salt‐doped sample 1‐Li+ , whereas the other sample ( 2‐Li+ ) with a longer PS coil revealed a lamellar structure. In particular, in the SAXS data of 2‐Li+ , an abrupt reduction in the lamellar thickness was observed near the PS glass transition temperature (Tg), in contrast to the SAXS data for 1‐Li+ . This reduction implies that there is a lateral expansion of the molecular section in the lamellar structure, which can be interpreted by the conformational energy stabilization of the long PS coil above Tg. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2372–2376, 2010  相似文献   

16.
Summary: In a low‐molecular‐weight polyethylene‐block‐poly(ethylene oxide) (PE‐b‐PEO) diblock copolymer, two pathway‐dependent melting processes were observed: Upon slow heating, the PE lamellar crystals melted at ≈97 °C into a disordered state. However, when the temperature rapidly jumped to above the melting point (e.g., 100 °C), the PE lamellar crystals transformed directly into an ordered lamellar melt, followed by an isothermal conversion into a disordered melt. This isothermal order‐to‐disorder transition was explained by superheating of the PE crystals using a GT diagram.

A schematic GT diagram explaining the pathway‐dependent double melting for a crystalline polyethylene‐block‐poly(ethylene oxide) copolymer.  相似文献   


17.
Well‐defined A3B‐, A2B2‐, and AB3‐type 4‐miktoarm star copolymers (Mn = 10,500–16,200, Mw/Mn = 1.16–1.18) consisting of poly(ethylene oxide) (PEO) and polymethacrylate bearing an azobenzene mesogen (PMA(Az)) as the arms and cyclotetrasiloxane as the core unit were synthesized using a combined route composed of a thiol‐ene click reaction and atom transfer radical polymerization. Microphase‐separated structures of the star copolymers in thin films with a thickness of approximately 100 nm were investigated by GISAXS and TEM. The A3B‐type star‐(PEO)3[PMA(Az)]1 copolymer formed a more highly ordered PEO cylinder array with perpendicular alignment in the PMA(Az) matrix than that of the corresponding linear‐type block copolymer. The center‐to‐center distance of the PEO cylinders and the cylinder diameter were 13 and 4 nm, respectively. The highly ordered star‐(PEO)3[PMA(Az)]1 thin film was directly transferred to a siloxane‐based nanodot array by oxygen reactive ion etching. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1175–1188  相似文献   

18.
Thermoresponsive surfaces are prepared via a spin‐coating method with a block copolymer consisting of poly(N‐isopropylacrylamide) (PIPAAm) and poly(butyl methacrylate) (PBMA) on polystyrene surfaces. The PBMA block suppresses the removal of deposited PIPAAm‐based polymers from the surface. The polymer coating affects the temperature‐dependent cellular behavior of the surfaces with respect to protein adsorption. By adjusting layer thicknesses, PBMA‐b‐PIPAAm‐coated surfaces are optimized to regulate the adhesion/detachment of cells by temperature changes. Thus, thermoresponsive polymer‐coated surfaces are able to harvest contiguous cell sheets with their basal extracellular matrix proteins.

  相似文献   


19.
An atomic force microscopy investigation was carried out on various thick (30–120 nm) polymethyl methacrylate‐b‐polystyrene and poly(2‐(dimethyl amino)ethyl methacrylate)‐b‐polystyrene films prepared via a grafting‐from method. The structure of the films was examined with both topographic and phase imaging. Several different morphologies were observed including a perforated lamellar phase with irregular perforations. In addition, complementary small‐angle X‐ray scattering and reflectometry results measurements on a non‐grafted polymer are presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号