首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tubular array of TiO2-nanotubes on a Ti substrate was used as a support for an Ag sputter-deposited layer intended for surface-enhanced Raman scattering (SERS) investigations. Composite samples of Ag/TiO2-nanotube/Ti were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured at different cathodic potentials ranging from −0.2 down to −1.2 V after the pyridine had been adsorbed on the TiO2-nanotube/Ti substrates covered with the Ag deposit. In addition, SERS spectra on a bulk electrochemically-roughened Ag reference substrate, were also measured.The SERS activity of the composite samples was strongly dependent on the amount of Ag deposit and, in some cases, was even higher than that for the Ag reference substrate. The SERS intensity vs. electrode potential dependences measured were interpreted in terms of the modified electronic structure of the Ag deposits due to the interaction of the Ag clusters with the TiO2-nanotube/Ti substrate.  相似文献   

2.
Tubular arrays of TiO2 nanotubes (ranging in diameter from 40 to 110 nm) on a Ti substrate were used as a support for Ag, Au or Cu deposits obtained by the sputter deposition technique, where the amount of metal varied from 0.01 to 0.2 mg/cm2. Those composite supports were intended for surface-enhanced Raman scattering (SERS) investigations. Composite samples were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured at different cathodic potentials ranging from −0.2 down to −1.2 V after the pyridine had been adsorbed on the metal-covered TiO2 nanotube/Ti substrates. In addition, SERS spectra on a bulk standard activated Ag, Au and Cu substrates were also measured. The SERS activity of the composite samples was strongly dependent on the amount of metal deposit, e.g. at and above 0.06 mg Ag/cm2, the intensity of SERS signal was even higher than that for the Ag reference substrate. The high activity of these composites is mainly a result of their specific morphology. The high SERS sensitivity on the surface morphology of the substrate made it possible to monitor very small temporal changes in the Ag metal clusters. This rearrangement was not detectable with microscopic (SEM) or microanalytical (AES) methods. The SERS activity of Au or Cu clusters was distinctly lower than those of Ag. The spectral differences exhibited by the three kinds of composites as compared to the reference metal samples are discussed.  相似文献   

3.
Silver nanoparticles deposited on various ‘inert’ porous materials (mainly Al2O3 and TiO2) are often used as substrates for surface‐enhanced Raman scattering (SERS) measurements. In this study, we used the sputter deposition technique to cover tubular arrays of Al2O3 and TiO2 with Ag nanoparticles. Raman spectra of pyridine (as a probe molecule) and of two selected dyes (5‐(4‐dimethylaminobenzylidene)rhodanine and 5‐(4‐(dimethylamino)benzylidene)‐3‐(3‐methoxypropyl)rhodanine) adsorbed on fabricated Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al substrates were measured. We found that the SERS spectra of pyridine adsorbed on Ag nanoparticles deposited on an Al2O3‐n/Al substrate are distinctly different from those measured for an Ag/TiO2‐n/Ti composite. Similar effects were observed for dyes adsorbed on the surface of both composites. The spectral differences between two kinds of composites (Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al) are discussed in terms of (1) the modified electronic structure of the Ag nanoparticles due to their interaction with different substrate materials and (2) the different atomic topology of the metal particles thus deposited on the surfaces of the substrates. Composite samples were also studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
SERS spectra of pyridine adsorbed on various kinds of vacuum evaporated (10?5 Torr) metals (Ag, Au, Ni, Pd, Pt, Ti and Co) and on single crystals of semiconductors (NiO and TiO2) were obtained at room temperature. The peak frequencies as shifted from those of free pyridine are assigned to the bands of N-bonded pyridine (chemisorbed pyridine). The λ0 dependence varied remarkably from metal to metal. The peak frequency and the λ0 dependence for the pyridine adsorbed on NiO or TiO2 are in good agreement with those on Ni or Ti, respectively, showing the chemical bonding between the N atom and the Ni or Ti atom. The effects of background and of polarization on the SERS spectra were examined in detail, thus revealing the orientation of the adsorbed molecules. Carbon monoxide chemisorbed on Ag was measured by infrared specular reflection as well as by SERS. The results indicate that chemisorbed species on the same substrate do not always give SERS. The SERS spectra obtained are well interpreted as being due to the mechanism of resonance Raman scattering via charge transfer excitation of the adsorbent-adsorbate interaction.  相似文献   

5.
We report on investigations upon a surface‐enhanced Raman scattering (SERS) substrate produced from a two‐dimensional single‐walled carbon nanotube (SWNT) network decorated with Ag nanoparticles. Using the strong and unique Raman spectrum of SWNTs as a reference, the SWNT/Ag nanostructure can be considered to provide two regions: one with an ultrasensitive SERS response for single‐molecule SERS (SMSERS) study; and another with uniform SERS enhancement over an area of several square millimeters for general SERS measurements. We report the appearance of an anomalous Raman feature at around 2180 cm−1 in the high‐sensitivity region which exhibits the characteristics of SMSERS. The SERS performance of the uniform area was characterized using pyridine vapor adsorbed onto the substrate. The presence of the SWNT/Ag nanostructure enhanced the Raman intensity by over seven orders of magnitude, a factor comparable to or exceeding that obtained on SERS substrates reported by other groups. The results indicate great potential to produce highly sensitive, uniform SERS substrates via further fine‐tuning of the nanostructure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Ag nanoparticles were exclusively deposited inside the pores of the porous anodic alumina (PAA) template through the deposition cycle including the incubation and the subsequent reduction of Ag(NH3) . Both the density and size of the produced Ag nanoparticles increased as the deposition cycle number increased. A field‐emission scanning electron microscopeand an ultraviolet‐visible spectrometer were applied, respectively, to study the morphology and the extinction spectra of the Ag nanoparticles. The optimum deposition number was found from the scanning electron microscope (SEM) analysis. Surface enhanced Raman scattering (SERS) spectra of p‐aminothiophenol recorded on the Ag–PAA substrates prepared under increasing number of deposition cycles, manifested an enlarging trend of peak intensity. A point‐by‐point SERS mapping of p‐aminothiophenol on the Ag–PAA substrate was acquired to characterise the homogeneity of the substrate. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, pure and Zn‐doped TiO2 nanoparticles (NPs) with various content of Zn were prepared by a sol–hydrothermal method and were employed as active substrates for surface‐enhanced Raman scattering (SERS). On the 3% Zn‐doped TiO2 substrate, 4‐mercaptobenzoic acid(4‐MBA) molecules exhibit a higher SERS intensity by a factor of 6, as compared with the native enhancement of 4‐MBA adsorbed on undoped TiO2 NPs. Moreover, the higher SERS activity was still observed on the 3% Zn‐doped TiO2 NPs at temperature even up to 125 °C. These results indicate that an appropriate amount of Zn doping can improve the SERS performances of TiO2 SERS‐active substrates. The introduction of Zn dopant can enrich the surface states (defects) of TiO2 and improve the separation efficiency of photo‐generated charge carriers (electrons and holes) in TiO2, according to measurements of X‐ray diffraction, UV‐visible diffuse reflectance spectroscopy, and photoluminescence, which are responsible for the influence of Zn dopant on the improved SERS performances of TiO2 NPs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, we use electrochemical oxidation–reduction cycles (ORC) methods to prepare surface‐enhanced Raman scattering (SERS)‐active gold substrates modified with SiO2 nanoparticles to improve the corresponding SERS performances. Based on the modified substrates, the SERS of Rhodamine 6G (R6G) exhibits a higher intensity by 3‐fold of magnitude, as compared with that of R6G adsorbed on a SERS‐active Au substrate without the modification of SiO2 nanoparticles. Moreover, the SERS enhancement capabilities of the modified and the unmodified Au substrates are seriously destroyed at temperatures higher than 250 and 200 °C, respectively. These results indicate that the modification of SiO2 nanoparticles can improve the thermal stability of SERS‐active substrates. The aging in SERS intensity is also depressed on this modified Au substrate due to the contribution of SiO2 nanoparticles to SERS effects. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
We have proposed dye-sensitized solar cells (DSSCs) with trench-type TiO2 nanotube structure to improve the low device efficiency of conventional TiO2 nanotube DSSCs using Ti substrate. Compared to the conventional standing-type TiO2 nanotube structure based DSSCs, the trench-type TiO2 nanotube structure based DSSCs have shown an improvement of device efficiency of approximately 40% due to the large increase of Jsc. In the trench-type TiO2 nanotube structure, the contact area between the TiO2 nanotube sidewall and the Ti substrate is significantly increased. This increase of contact area provides more charge transport paths than exist in the conventional standing-type TiO2 nanotube structure and reduces the electrical resistance between the Ti substrate and the TiO2 nanotubes. Therefore, the remarkable increase of Jsc is the result of the charge collection efficiency, which is improved due to the increase of contact area between the TiO2 nanotube sidewall and the Ti substrate in the trench-type TiO2 nanotube structure. The fabrication of the trench-type TiO2 nanotube structure is an effective manufacturing process for improving the device efficiency of TiO2 nanotube based DSSCs using Ti substrate. DSSCs having an 11.9 μm thick trench-type TiO2 nanotube structure have shown an efficiency of 5.74%.  相似文献   

10.
Very thin films of TiO2 and Ti2O3 were deposited by evaporation on Ag, on silver oxidized by an oxygen plasma and on Pt. Depending on the coverage, there were changes in the values of the binding energy (BE) and the Auger parameter (α′) of O and Ti. These shifts occur in the opposite direction with respect to that previously found for TiO2 supported on insulators. Among others, reasons for these shifts are the different relaxation energy of photoholes and the occurrence of charge transfer processes at the metal oxide/metal interface. UV-visible absorption spectra of thin films of TiO2Ag composites have shown a narrowing in the gap energy (Eg) of the oxide in respect to bulk titania. This observation shows the existence of a correlation between Eg and α′ when TiO2 is supported on a metal surface. The Auger parameter of O and Ti is also sensitive to the intercalation of TiO2 within a “sandwich” structure of SiO2 and Ag, and the values found for the spectroscopic parameters are intermediate between those of TiO2 supported on Ag and SiO2. This result opens up the possibility of modulating the electronic properties of thin layers of TiO2 by interaction with other materials.  相似文献   

11.
We synthesized titanium dioxide (TiO2) and nitrogen-doped TiO2 nanoparticles (N-TiO2 NPs) via a sol-hydrothermal method using ammonium chloride (NH4Cl) as the nitrogen (N) source. Furthermore, an N-TiO2/4-mercaptobenzoic acid (4-MBA)/silver (Ag) nanocomplex served as an active substrate for surface-enhanced Raman scattering (SERS) and was prepared by self-assembly. During SERS, the Raman signals of 4-MBA of the N-TiO2/MBA/Ag nanocomplexes exhibited higher intensity and sensitivity than pure TiO2/MBA/Ag, with 1% N doping in N-TiO2, producing the strongest Raman signals. We characterized the N-TiO2 hybrid materials by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible diffuse reflectance spectra. N doping did not influence the phase of the TiO2 crystal. The doped N entered into the crystal lattice of the TiO2, replacing some oxygen (O) to form Ti-O-N or Ti-N-O linkage. The results indicated that an appropriate amount of N doping could enhance the SERS performance of the TiO2 SERS substrate via N substitution doping. These doping forms were beneficial to the molecular charge transfer (CT), and this resulted in improved SERS performance for N-doped TiO2 NPs. We attributed this improvement to the formation of N-doping energy levels that were beneficial to the process of TiO2 to MBA molecule CT. This work not only enriched the nonmetal-doped CT mechanism in SERS but also provided several reference values for practical applications.
Graphical abstract N-doped TiO2 nanoparticles were synthesized. Whereafter, N-TiO2/MBA/Ag nanocomplexes were prepared and served as a SERS-active substrate. An appropriate amount of N doping can enhance the SERS properties of TiO2 SERS-active substrate by nitrogen substitution doping. The nonmetal doping TiO2-to-molecule CT mechanism and the synergistic effect in N-TiO2/MBA/Ag charge transfer systems have been studied.
  相似文献   

12.
The adsorption of pyridine (py) on Fe, Co, Ni and Ag electrodes was studied using surface‐enhanced Raman scattering (SERS) to gain insight into the nature of the adsorbed species. The wavenumber values and relative intensities of the SERS bands were compared to the normal Raman spectrum of the chemically prepared transition metal complexes. Raman spectra of model clusters M4(py) (four metal atoms bonded to one py moiety) and M4(α‐pyridil) where M = Ag, Fe, Co or Ni were calculated by density functional theory (DFT) and used to interpret the experimental SERS results. The similarity of the calculated M4(py) spectra with the experimental SERS spectra confirm the molecular adsorption of py on the surface of the metallic electrodes. All these results exclude the formation of adsorbed α‐pyridil species, as suggested previously. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, Ag nanoparticles (NPs) were deposited on patterned TiO2 nanotube films through pulse‐current (PC) electrodeposition, and as a result patterned Ag NPs films were achieved. Scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and X‐ray diffraction (XRD) were used, respectively, to study the morphology, uniformity, and phase structure of the patterned Ag NP films. The size and density of the as‐deposited Ag NPs could be controlled by changing the deposition charge density, and it was found that the patterned Ag NP films produced under a charge density of 2.0 C cm−2 gave intense UV–vis and Raman peaks. Two‐dimensional surface‐enhanced Raman scattering (SERS) mapping of rhodamine 6G (R6G) on the patterned Ag NP films demonstrated a high‐throughput, localized molecular adsorption and micropatterned SERS effect. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Silver nanoparticles (Ag NPs) enjoy a reputation as an ultrasensitive substrate for surface‐enhanced Raman spectroscopy (SERS). However, large‐scale synthesis of Ag NPs in a controlled manner is a challenging task for a long period of time. Here, we reported a simple seed‐mediated method to synthesize Ag NPs with controllable sizes from 50 to 300 nm, which were characterized by scanning electron microscopy (SEM) and UV–Vis spectroscopy. SERS spectra of Rhodamine 6G (R6G) from the as‐prepared Ag NPs substrates indicate that the enhancement capability of Ag NPs varies with different excitation wavelengths. The Ag NPs with average sizes of ~150, ~175, and ~225 nm show the highest SERS activities for 532, 633, and 785‐nm excitation, respectively. Significantly, 150‐nm Ag NPs exhibit an enhancement factor exceeding 108 for pyridine (Py) molecules in electrochemical SERS (EC‐SERS) measurements. Furthermore, finite‐difference time‐domain (FDTD) calculation is employed to explain the size‐dependent SERS activity. Finally, the potential of the as‐prepared SERS substrates is demonstrated with the detection of malachite green. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
We have developed a new substrate for surface‐enhanced Raman scattering (SERS) measurements involving a thin silver layer deposited over an ion‐etched TiO2 inverse opal. The latter is formed by chemically infiltrating a polystyrene opal array with TiO2 followed by a thermal decomposition of the spheres. The SERS response of the these substrates is examined for several sphere sizes and lasers wavelengths; the results show that such substrates yield high enhance factors, comparable to substrates involving a silver layer deposited directly on a polystyrene opal array. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
To better understand experimentally observed surface‐enhanced Raman Scattering (SERS) of polychlorinated biphenyls (PCBs) adsorbed on nanoscaled silver substrates, a systematic theoretical study was performed by carrying out density functional theory and time‐dependent density functional theory calculations. 2,2′,5,5′‐tetrachlorobiphenyl (PCB52) was chosen as a model molecule of PCBs, and Agn (n = 2, 4, 6, and 10) clusters were used to mimic active sites of substrates. Calculated normal Raman spectra of PCB52–Agn (n = 2, 4, 6, and 10) complexes are analogical in profile to that of isolated PCB52 with only slightly enhanced intensity. In contrast, the corresponding SERS spectra calculated at adopted incident light are strongly enhanced, and the calculated enhancement factors are 104 ~ 105. Thus, the experimentally observed SERS phenomenon of PCBs supported on Ag substrates should correspond to the SERS spectra rather than the normal Raman spectra. The dominant enhancement in Raman intensities origins from the charge transfer resonance enhancement between the molecule and clusters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The surface‐enhanced Raman scattering substrate of Ag–Ag nanocap arrays are prepared by depositing Ag film onto two‐dimensional (2D) polystyrene colloidal nanosphere templates. When the original colloidal arrays are used as the substrate for Ag deposition, surface‐enhanced Raman scattering (SERS) enhancements show the strong size‐dependence behaviours. When O2‐plasma etched 2D polystyrene templates are used as the substrate for Ag deposition to form nanogaps, the gap sizes between adjacent Ag nanocaps from 5 to 20 nm generate even greater SERS enhancements. When SiO2 coverage is deposited to isolate the Ag nanocaps from the neighbours, the SERS signals are enhanced more. The significant SERS effects are due to the coupling between Ag nanocaps controlled by the distance, which enhances the local electric‐field intensity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The solid‐phase synthesis of Ag‐coated Fe3O4 microsphere was elaborated under argon atmosphere. This straightforward process utilized neither reducing agents nor electric current and involved the dry mixing of a precursor of CH3COOAg with Fe3O4 microspheres followed by heating in an inert atmosphere. Ag nanoparticles with diameters of 30–50 nm were well‐decorated on the surfaces of Fe3O4 microspheres. The as‐synthesized Ag‐coated Fe3O4 microspheres were assembled into a surface‐enhanced Raman scattering (SERS) substrate holding clean and reproducible properties under an externally exerted magnetic force. Using these nanoprobes, analyte molecules can be easily captured, magnetically concentrated, and analyzed by SERS. This clean SERS substrate was used to detect 4‐aminothiophenol, even at a concentration as low as1.0 × 10–12 M. In particular, the Ag‐coated Fe3O4 microspheres, acting as reproducible SERS substrates, were applied to detect methyl‐parathion and 4‐mercaptopyridine. Strong SERS signals were obtained with the analytes at a concentration of 1.0 × 10–6 M. The unique, clean, and reproducible properties indicate a new route in eliminating the single‐use problem of traditional SERS substrates and show promising applications for detecting other organic pollutants. Similarly, this work may provide a new model system to a series of metal–Fe3O4 decorating reactions for a reproducible utilization. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Surface‐enhanced Raman scattering (SERS) spectroscopy is an analytical method for the detection of low amounts of analytes adsorbed on an appropriate coinage metal (Au, Ag, Cu) surface. Generally, the values of the enhancement factor are the highest on silver, lower on gold and relatively very low on copper. In this study, we have focused on the estimation of the enhancement factors of copper surface/substrates formed by different preparation procedures. The SERS activity of large electrochemically prepared substrates and colloidal systems is compared. The surface morphology of the large substrates was studied using scanning electron microscopy and atomic force microscopy. The size distribution of colloidal nanoparticles was monitored by dynamic light scattering. The values of enhancement factor are in both cases more than 105 for the FT‐SERS spectra, demonstrating the fundamental role of nanostructured copper as a substrate material at the excitation wavelength (1064 nm) used. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号