首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a slow-light photonic crystal waveguide, which uses a combination of circular and elliptical air holes arranged in a hexagonal lattice with the background material of silicon nitride (refractive index n = 2.06). Large value of normalized delay bandwidth product (NDBP = 0.3708) is obtained. We have analyzed nonlinear performance of the structure. With our proposed geometry strong SPM is observed at moderate peak power levels. Proposed photonic crystal waveguide has slow light applications such as reduction in length and power consumption of all-optical and electro-optic switches at optical frequency.  相似文献   

2.
In this paper, we report on the design of two major components of a laser architecture using Si-nc embedded in SiO2 as the optical gain medium and sub-wavelength periodic structures to form the resonant cavity. Dimensions of the structures have been matched to near-infrared wavelengths (∼850 nm) of the maximum photoluminescent emission where optical gain has been observed from Si-nc. Both the front (FM) and rear (RM) mirrors have been fabricated by the implantation of Si ions (50 keV, 2×1017 Si+/cm2) through a mask, in order to produce a Bragg reflector by optical index contrast between the implanted and the non-implanted zones. Two closely spaced Bragg reflectors are used in the FM structure to allow a narrow bandpass (partial transmission) centered at 850 nm. The implanted structures have been annealed to produce Si-nc and passivation. Scanning electron microscopy (SEM) images show that the design dimensions of the structure have been obtained. Characterization of the structures by laser excitation reveals an optical gap in both mirrors between 825 and 870 nm, as per the design parameters. A quality factor Q∼95 and a reflectivity R∼0.2 have been measured for the FM. These results support the concept that a complete Si-nc based laser cavity can be built to emit coherent light.  相似文献   

3.
In this work, interface modes of two-dimensional photonic crystal heterostructures have been investigated by usage of the supercell method. The photonic crystal heterostructure is made of two photonic crystals with square symmetry in which one of them is composed of circular dielectric rods in air background and the other one is constructed by drilled square holes in dielectric. It is shown that using of a proper supercell plays an important role in obtaining the correct interface modes. We have also showed that the guided interface modes and single mode which is different from those reported in some published works are nearly dispersionless.  相似文献   

4.
A low-loss and flat dispersion line-defect photonic crystal waveguide is proposed with a simplified waveguide-design on silicon-on-insulator (SOI) based on hexagonal lattice of 2D photonic crystals. A propagation loss of 3.6 dB/mm and flat dispersion over a large wavelength band is reported with an easy-to-implement design without disturbing the periodicity (keeping lattice constant and hole diameter fixed) in the line-defect photonic crystals. The combined effect of photonic crystals (in-plane periodicity) and the vertical layers on SOI results in efficient waveguiding and dispersion characteristics.  相似文献   

5.
A review of the properties of silicon-based two-dimensional (2D) photonic crystals is given, essentially infinite 2D photonic crystals made from macroporous silicon and photonic crystal slabs based on silicon-on-insulator basis. We discuss the bulk photonic crystal properties with particular attention to the light cone and its impact on the band structure. The application for wave guiding is discussed for both material systems, and compared to classical waveguides based on index-guiding. Losses of resonant waveguide modes above the light line are discussed in detail.  相似文献   

6.
2维光子晶体谐振腔的分析与模拟   总被引:1,自引:2,他引:1       下载免费PDF全文
 为指导光子晶体谐振腔的设计,运用3维电磁场仿真软件HFSS模拟了2维光子晶体谐振腔,分析了影响2维光子晶体谐振腔的主要特性参数,主要包括所插介质杆的排列结构、介电常数及其半径和间距。研究表明,在其它条件保持不变时,若增大介质杆半径,则同一模式频率没有同一的变化规律;若增大介质杆介电常数,则出现的规则模式减少,并且没有基模出现,同一个模式,频率明显降低;若增大介质杆间距,则计算的频率间隔减小,对其它参数影响不大,只是同一模式的频率略有减小。  相似文献   

7.
Biosensors, based on photonic crystal (PC), are emergent subject. The use of PCs in this area brought solutions to both miniaturization and integration challenges that have been facing research groups for long time. We are only recently, by engineering such defects, able to propagate light in complex structures containing molecules of different sizes and shapes. We propose a novel structure containing defects with various sizes. The PC is formed by a dielectric cylinders with permittivity 8.9 (alumina Al2O3) and a radius r = 0.2a (a is the square lattice constant), arranged in a square lattice. We use the finite difference time domain to investigate the sensitivity of the proposed sensor to water. The defect based sensing element is introduced in two directions 〈0 1〉 and 〈1 0〉. These simulations show a better sensitivity to water than other analytes. It appears in the transmission curves where the peak shifts to high frequency when the refractive index is changed.  相似文献   

8.
Xin Wang 《Optik》2011,122(12):1042-1045
Two-dimensional (2D) rod-type photonic crystal (PC) line defect waveguide (LDW) laser cavities based on three types of line defect modes with zero group velocity are studied by using finite-difference time-domain (FDTD) method. These laser cavities have high quality (Q) factor, better localization of light, non-uniform gain distribution and small overlap between gain medium and light field. Therefore, they have the advantages over conventional and air-bridge PC cavities with uniform gain, such as low threshold, single mode lasing and effectively avoiding thermal effect. From their comparison, one can find the mode at middle Brillouin zones (BZ) is the best one to be used as lasing mode. Its dynamic lasing process and lasing features are demonstrated by the numerical experiment where the FDTD method coupling Maxwell's equations with the rate equations of electronic population is used.  相似文献   

9.
We study the coupling efficiency between a cavity resonator and semiconducting waveguide in a two-dimensional photonic crystal by varying the temperature. We used the revised plane wave expansion and finite difference time domain methods to evaluate the coupling efficiency. The photonic crystal waveguide is composed of a row of InSb semiconducting materials, and the efficiency was calculated at various temperatures. The findings indicate that the temperature can be used as a useful efficiency controller.  相似文献   

10.
We demonstrated a photonic crystal waveguide based dense wavelength division multiplexing device using the resonances in the cavities. The demultiplexing is achieved through filtering. This filtering is achieved by varying the radii of the surrounding holes of the cavity, which in turn changes the resonant wavelength of the cavity. The four wavelengths demultiplexed in the design are 0.8 nm apart in the optical region centered on 1.55 and 1.56 μm. The device designed and simulated has easy to realize structure as well as high quality factor. Two-dimensional Finite Difference Time Domain (FDTD) is chosen to do the simulation of this work.  相似文献   

11.
The near-infrared (NIR) narrow filter properties in the transmission spectra of a one-dimensional photonic crystal doped with semiconductor metamaterial photonic quantum-well defect (PQW) were theoretically studied. The behavior of the defect mode as a function of the stack number of the PQW defect structure, the filling factor of semiconductor metamaterial layer, the polarization and the angle of incidence were investigated for Al-doped ZnO (AZO) and ZnO as the semiconductor metamaterial layer. It is found that the frequency of the defect mode can be tuned by variation of the period of the defect structure, polarization, incidence angle, and the filling factor of the semiconductor metamaterial layer. It is also shown that the number of the defect mode is independent of the period of the PQW defect structure and is in sharp contrast with the case where a common dielectric or metamaterial defect are used. The results also show that for both polarizations the defect mode is red-shifted as the number of the defect period and filling factor increase. An opposite trend is observed as the angle of incidence increases. The proposed structure could provide useful information for designing new types of tuneable narrowband filters at NIR region.  相似文献   

12.
The contra-directional coupling between two photonic crystal (PC) waveguides is studied, using the finite-difference time-domain (FDTD) method. A design of contra-directional coupler is presented and its transmission properties are investigated. The device can be used as an add/drop filter. It is also shown that the coupled mode theory is suitable to study the photonic crystal waveguide coupler.  相似文献   

13.
In this work, we theoretically investigate the properties of defect modes in a defective photonic crystal containing a semiconductor metamaterial defect. We consider the structure, (LH)N/DP/(LH)N, where N and P are respectively the stack numbers, L is SiO2, H is InP, and defect layer D is a semiconductor metamaterial composed of Al-doped ZnO (AZO) and ZnO. It is found that, within the photonic band gap, the number of defect modes (transmission peaks) will decrease as the defect thickness increases, in sharp contrast to the case of using usual dielectric defect. The peak height and position can be changed by the variation in the thickness of defect layer. In the angle-dependent defect mode, its position is shown to be blue-shifted as the angle of incidence increases for both TE and TM waves. The analysis of defect mode provides useful information for the design of tunable transmission filter in semiconductor optoelectronics.  相似文献   

14.
Ming-Bao Yan  Qian Gong 《Optik》2010,121(23):2133-2136
The effects of the defect and doping on the transmission properties are investigated in two-dimensional photonic crystal (PC) with triangular rods using the finite difference time domain (FDTD) method. The results show that the width and the central position of the photonic band gap (PBG) depend on the thickness of rods with defect or composite-defect, and the refractive index of doped dielectric rods. The transmission properties of composite-defect combined with doping are further investigated. The thinner the nested concentric triangular rod and the smaller the refractive index is, the wider the band gaps is.  相似文献   

15.
Photonic crystal structures (PCs) of tetragonal lattice type are introduced and studied. They feature complete three-dimensional (3D) photonic bandgaps (PBGs). The PC design is based on two systems of ordered, parallel pores being perpendicular to each other. For increasing pore radii, the pore systems interpenetrate and an inverted woodpile geometry arises. The size of the 3D bandgaps depends on the ratio of the cell parameters Lx, Ly, and Lz, the pore radii and the refractive index of the dielectric material. If realized as a silicon/air structure, the maximum 3D gap is larger than 25%. A possible fabrication route for the near-infrared is based on 2D macroporous silicon where perpendicular pores are drilled, e.g., by focused-ion-beam etching. The dispersion behaviour of the PCs is theoretically analysed (band structures, density-of-states), systematically varying all relevant parameters. The optimization of the PBG sizes as well as a possible tunability of the PBG energies are discussed.  相似文献   

16.
Two-dimensionally periodic photonic crystal microcavity filters in a ridge waveguide format have been designed and fabricated. Transition mode-matching features were added to increase the optical throughput by more than a factor of two. An increase of Q-factor (more than 100%) was achieved by the addition of two further rows of photonic crystal holes to the microcavity filters. Attempts have also been made to tailor the filter response by applying design concepts used in other Bragg-grating optical filter technologies.  相似文献   

17.
A wavelength-division-multiplexing system with high compactness and extremely simple structures is designed and analyzed theoretically for optical communication wavelengths. The structure consists of a self-collimation region, a coupler, a coupling section, and two arbitrarily bent periodic dielectric waveguides (PDWGs). Operation principle of the devices is based on self-collimation and directional coupling mechanism. The equal-frequency contours (EFCs) are nearly flat from 0.17–0.22 (2πc/a), thus the self-collimation region acts as a multiplexer. Operation principle of the demultiplexer is based on directional coupling in two parallel periodic dielectric waveguides. The device performances have been evaluated by the finite-difference time-domain simulations coupled with perfectly matched layer (PML) boundary conditions.  相似文献   

18.
光控液晶光子晶体微腔全光开关   总被引:1,自引:0,他引:1       下载免费PDF全文
周建伟  梁静秋  梁中翥  田超  秦余欣  王维彪 《物理学报》2013,62(13):134208-134208
设计了一种缺陷模迁移光子晶体微腔全光开关. 两条二维三角晶格空气孔光子晶体波导由一个光子晶体微腔连接, 在微腔的点缺陷中填充掺有少量偶氮聚合物的苯乙炔类液晶. 通过调节控制光的偏振态, 使偶氮聚合物发生顺-反异构化反应, 带动液晶分子重新取向, 从而改变光子晶体微腔的谐振波长, 进而实现光的通过与截止. 运用时域有限差分法和平面波展开法分析 了二维光控液晶光子晶体微腔全光开关的光学特性. 数值计算结果表明: 对于1.55 μ通信波段通过外界偏振光控制所填充的向列相液晶 的折射率可以实现对光波的导通与截止. 分析结果显示, 此开关具有阈值低, 消光比较大, 体积小等优点. 关键词: 二维光子晶体微腔 波导 时域有限差分(FDTD) 液晶  相似文献   

19.
In this paper, photonic crystal (PhC) based on two dimensional (2D) square and hexagonal lattice periodic arrays of Silicon Carbide (SiC) rods in air structure have been investigated using plane wave expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength (λ = 1.55 μm) by varying the radius of the rods and lattice constant. The result obtained shows that a photonic band gap (PBG) exists for TE-mode propagation. First, the effect of temperature on the width of the photonic band gap in the 2D SiC PhC structure has been investigated and compared with Silicon (Si) PhC. Further, a cavity has been created in the proposed SiC PhC and carried out temperature resiliency study of the defect modes. The dispersion relation for the TE mode of a point defect A1 cavity for both SiC and Si PhC has been plotted. Quality factor (Q) for both these structures have been calculated using finite difference time domain (FDTD) method and found a maximum Q value of 224 for SiC and 213 for Si PhC cavity structures. These analyses are important for fabricating novel PhC cavity designs that may find application in temperature resilient devices.  相似文献   

20.
Wenyuan Rao 《Optik》2010,121(21):1934-1936
We present a design of all-optical switches based on one-dimensional photonic crystals (1D PhC) doped with nonlinear optical materials. The 1D PhC switch structure is composed of a PhC cavity sandwiched by two accessional PhC microcavities. The center PhC cavity has two resonant frequencies with nearly the same quality factors (Q), while the accessional PhC cavities have the same resonant frequency, which is equal to one of the resonant frequencies of the center cavity. The two accessional PhC cavities cause reduction of Q value in this resonant frequency and result in different Q values of two modes. We realize all-optical switch effect by selecting pump light wavelength at the low Q mode and probe light wavelength at the other mode. The theoretical simulations by using the finite difference time domain method show that the pump light intensity required to realize optical switch effect in the designed switch is 50 times smaller than that in one-dimensional photonic crystals cavity with only one resonant mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号