首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article communicates the thermal performance, heat transfer rate, and friction factor of Al2O3/DI water nanofluids at different concentrations in a micro-finned tube with tube helical inserts for different twist ratios. The thermal performance, heat transfer coefficient, and friction of the present study is also compared with a plain tube for validation. From the study, it is identified that the micro-finned tube with tube insert performance is higher as compared with a plain tube. Similarly, an empirical relation for Nusselt number (Nu) and friction factor (f) is estimated for straight twisted tube and left-right combination. The deviation between experimental and theoretical values for left-right twist and straight twist is found as 3 and 7% for Nusselt number and 7 and 9% for friction factor, respectively. Similarly, while analyzing the thermal performance, it was found that the maximum performance achieved was with a micro-fin tube with left-right twist with nanofluid concentration of 0.2%.  相似文献   

2.
This paper studies the experimental evaluation of TiO2 nanofluids in enhancing the heat transfer rate and friction factor on a micro-finned tube fitted with twisted tape inserts. Results show that the enhancement in heat transfer and pumping power completely depends on the concentration ratio of nanoparticles, pitch ratio and the type of pitch. Comparisons were made with the previous study with different operating parameters such as twist ratio and twist type. Viscosity of nanofluid increases with an increase in the concentration, which leads to increased pressure drop and pumping power. For the Reynolds number (Re = 4000), the maximum performance ratio was found as 2.1, 2, for concentration of 0.1 and 0.05, respectively. The addition of microfin arrangement inside the circular tube enhanced the performance ratio with minimum concentration of TiO2 nanofluid.  相似文献   

3.
This study reports the comparison of heat transfer and friction factor characteristics of helical screw inserts in Al2O3–water and carbon nano-tube–water nano-fluids through a straight pipe in transition regime with constant heat flux boundary condition. Experiments were carried out by using 0.15% volume concentration of Al2O3–water and carbon nano-tube–water nano-fluid with helical tape inserts of twist ratio, TR = 1.5, 2.5, and 3. The thermal performance of helical screw tape inserts with the carbon nano-tube–water nano-fluid is found -to be higher when compared to the Al2O3–water nano-fluid. In addition, the maximum enhancement in heat transfer was obtained for the carbon nano-tube–water nano-fluid with helical tape inserts of twist ratio 1.5. The increase in pressure drop of the Al2O3–water nano-fluid with helical screw tape inserts is found to be higher compared to the carbon nano-tube–water nano-fluid helical screw tape inserts at lower value of twist ratio.  相似文献   

4.
Huaqing Xie  Yang Li  Wei Yu 《Physics letters. A》2010,374(25):2566-2568
We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al2O3, ZnO, TiO2, and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al2O3, and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.  相似文献   

5.
This paper presents a comparison of thermal performance of helical screw tape inserts in laminar flow of Al2O3/water and CuO/water nanofluids through a straight circular duct with constant heat flux boundary condition. The helical screw tape inserts with twist ratios Y = 1.78, 2.44 and 3 were used in the experimental study using 0.1% volume concentration Al2O3/water and CuO/water nanofluids. Nanofluids with required volume concentration of 0.1% were prepared by dispersing specified amounts of Al2O3 and CuO nanoparticles in deionised water. The performance analysis of helical screw tape inserts in laminar flow of Al2O3/water and CuO/water nanofluids is done by evaluating thermal performance factor for constant pumping power condition. Thermal performance factor of helical screw tape inserts using CuO/water nanofluid is found to be higher when compared with the corresponding value using Al2O3/water. Therefore, the helical screw tape inserts show better thermal performance when used with CuO/water nanofluid than with Al2O3/water nanofluid.  相似文献   

6.
The Prandtl number, Reynolds number and Nusselt number are functions of thermophysical properties of nanofluids, and these numbers strongly influence the convective heat transfer coefficient. The thermophysical properties vary with volumetric concentration of nanofluids. Therefore, a comprehensive analysis was performed to evaluate the effects on the performance of nanofluids due to variations of density, specific heat, thermal conductivity and viscosity, which are functions of nanoparticle volume concentration. Three metallic oxides, aluminum oxide (Al2O3), copper oxide (CuO), and titanium dioxide (TiO2), dispersed in water as the base fluid were studied. A convenient figure of merit, known as the Mouromtseff number, is used as a base of comparisonfor laminar and turbulent flows. The results indicated that the considered nanofluids can successfully replace water in specific applications for a single-phase forced convection flow in a tube.  相似文献   

7.
An experimental investigation has been carried out to study the enhancement in heat transfer coefficient by inserting coiled wire around the outer surface of the inner tube of the double-pipe heat exchanger. Insulated wires, with a circular cross-section of 2 mm diameter, forming a coil of different pitches (p = 6, 12, and 20 mm), were used as turbulators. The investigation is performed for turbulent water flow in a double-pipe heat exchanger with cold water in the annulus space for both parallel and counter flows. The experiments were performed for Reynolds numbers ranging from 4,000 to 14,000. The experimental results reveal that the use of coiled circular wires leads to a considerable increase in heat transfer coefficients compared with a smooth wall tube for both parallel and counter water flows. The mean Nusselt number increases with Reynolds number and pitch. The convective heat transfer coefficient for a turbulent water flow increases for all coiled wire pitches, with the highest enhancement of about 450% for counter flow and 400% for the parallel flow. New correlations for mean relative Nusselt numbers at different coiled wire pitches are provided.  相似文献   

8.
刘东  李佳蓬  何蔚然  胡安杰  蒋斌 《强激光与粒子束》2018,30(11):111001-1-111001-7
引入潜热型功能热流体替换现有传统工质冷却大功率激光器,实验研究了潜热型功能热流体与传统工质去离子水在高4 mm、宽2 mm、间距1 mm的微针肋内的层流流动换热特性。结果表明:在雷诺数Re为625~1125范围内,潜热型功能热流体均表现出比水更好的冷却性能及更低的壁面温度,且存在最佳的质量分数值;相同工况下,潜热型功能热流体平均努谢尔数Nu大于去离子水,平均努谢尔数Nu随着雷诺数Re的增加而增加。拟合了平均努谢尔数与流体雷诺数、普朗特数、质量分数的经验的关系式,最大偏差为16.9%,可以较好反映潜热型功能热流体的换热特性;潜热型功能热流体沿着流动长度的方向存在一个稳定的局部换热强化区,且强化换热存在最佳的长度。  相似文献   

9.
M. A. Omara 《实验传热》2013,26(5):691-706
Heat transfer characteristics and friction factor in the horizontal double pipes of a flat tube with full and varied spacer length helical screws at various rotational speeds are investigated for Reynolds numbers ranging from 580 to 1,582. The heat transfer and friction factor of the inserted tube are significantly increased compared to those of the plain tube. The Nusselt number, friction factors, and thermal enhancement efficiency were increased with decreasing spacer length at increasing rotational speed under the same operating conditions.  相似文献   

10.
Nanofluids are a new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil etc. significantly enhances their thermal properties. Several phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents a systematic literature survey to exploit the characteristics of nanofluids, viz., thermal conductivity, specific heat and other thermal properties. An empirical correlation for the thermal conductivity of Al2O3 + water and Cu + water nanofluids, considering the effects of temperature, volume fraction and size of the nanoparticle is developed and presented. A correlation for the evaluation of Nusselt number is also developed and presented and compared in graphical form. This enhanced thermophysical and heat transfer characteristics make fluids embedded with nanomaterials as excellent candidates for future applications.   相似文献   

11.
Abstract

Heat transfer characteristics of water-based nanocrystalline alumina (Al2O3) nanofluids flowing through a uniformly heated tube under a fully developed laminar and turbulent flow regime is investigated experimentally in the present work to explore the heat transfer mechanism in nanofluids. In a laminar flow, the increase in Nusselt number was attributed to the thermophysical properties of the nanofluid. The movement of nanoparticles, along with the turbulent eddies in the turbulent core region and diffusion mechanism, such as thermophoresis, in the laminar sublayer are believed to be the reasons for enhanced heat transfer in turbulent region. The compatibility of Al2O3/water nanofluids was also examined by monitoring its color.  相似文献   

12.
C. Onan  D.B. Ozkan 《实验传热》2013,26(2):244-265
The heat and mass transfer from a grooved tube is investigated experimentally for a falling-film flow. The experiments are conducted on a helical trapezoidal grooved tube at three temperatures of the feeding water: 30°C, 35°C, and 40°C. The Reynolds number (Re) of the air ranges between 1,500 and 3,500. Nusselt number (Nu) is expressed as a function of the Prandtl number (Pr), Re for air (Rea), Re for water (Rew); Sherwood number (Sh) is expressed as a function of the Schmidt number (Sc), Rea, and Rew, and the correlation coefficients are determined.  相似文献   

13.
测量了水平微细圆管内蒸馏水和不同质量浓度的水基多壁碳纳米管纳米流体在低雷诺数下的强制对流换热特性。实验结果表明,与蒸馏水相比,纳米流体的对流换热系数显著提高,且随质量浓度和管内雷诺数的增大而增大;并且研究了流体管内流动阻力特性,得到的泊肃叶数f·Re值随着雷诺数的变化不明显,但纳米流体的f·Re值要明显小于纯水。  相似文献   

14.
对油基钻屑在螺纹推进式换热器内的流动换热过程进行了数值模拟,研究了螺杆转速、油基钻屑雷诺数Re和螺纹截面形状对流动换热的影响。结果表明:随着螺杆转速增加,传热系数、油基钻屑出口温度均增大;同时发现,当雷诺数Re<250时,壳侧Nusselt数随雷诺数Re增大而迅速增大,此后雷诺数对Nusselt数影响较小;Nusselt数随曲率比di/D增大而增大。为方便工程设计,利用数值结果给出了油基钻屑的流动换热关系式。  相似文献   

15.
A mathematical model to predict large enhancement of thermal conductivity of nanofluids by considering the Brownian motion is proposed. The effect of the Brownian motion on the flow and heat transfer characteristics is examined. The computations were done for various types of nanoparticles such as CuO, Al2O3, and ZnO dispersed in a base fluid (water), volume fraction of nanoparticles ? in the range of 1 % to 6 % at a fixed Reynolds number Re = 450 and nanoparticle diameter dnp = 30 nm. Our results demonstrate that Brownian motion could be an important factor that enhances the thermal conductivity of nanofluids. Nanofluid of Al2O3 is observed to have the highest Nusselt number Nu among other nanofluids types, while nanofluid of ZnO nanoparticles has the lowest Nu. Effects of the square cylinder on heat transfer characteristics are significant with considering Brownian motion. Enhancement in the maximum value of Nu of 29 % and 26 % are obtained at the lower and the upper walls of the channel, respectively, by considering the Brownian effects, with square cylinder, compared with that in the case without considering the Brownian motion. On the other hand, results show a marked improvement in heat transfer compared to the base fluid, this improvement is more pronounced on the upper wall for higher ?.  相似文献   

16.
ABSTRACT

Present study investigates the heat transfer and friction characteristics of heat exchanger tube fitted with perforated twisted tape (PTT) insert having V cuts. A copper tube of 1 m length and 0.032 m inner diameter is used as test section to collect the experimental data by varying the twist ratio of PTT from 2 to 6 for the Reynolds number range of 2,700–23,400. V cuts are introduced in the PTT and the V-cut relative pitch ratio is varied from 1 to 2. The maximum thermo-hydraulic performance parameter is found to be 1.58.  相似文献   

17.
M. Mirzaei  A. Azimi 《实验传热》2013,26(2):173-187
In this work, heat transfer and pressure drop characteristics of graphene oxide/water nanofluid flow through a circular tube having a wire coil insert were studied. The required graphene oxide was synthesized via the Hummer method and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (SRD), and scanning electron microscope (SEM) methods. Dispersing graphene oxide in the water, nanofluids with 0.02, 0.07, and 0.12% volume fraction were prepared. An experimental set-up was designed and made to investigate the heat transfer performance and pressure loss of nanofluids. All experiments were carried out in the constant heat flux at tube wall conditions. The volumetric flow rates of the nanofluid were adjusted at 6, 8, and 10 L/min. Thermal conductivity, specific heat, density, and viscosity as thermophysical properties of the nanofluid were calculated using graphene oxide and water properties at the average temperature via appropriate relations. These properties were applied to calculate the convective heat transfer coefficient, Nusselt number, and friction factors for each experiment. Finally, the constant and exponents of Duangthongsuk and Wongwises's correlations for Nusselt number and friction factor were corrected by experimental results. The achieved experimental data have shown good agreement with those predicted. The results have shown that 0.12 vol% of graphene oxide in the water can enhance convective heat transfer coefficient by about 77%. As a result, it can be concluded that the graphene oxide/water can be used in the heat transfer devices to achieve more efficiency.  相似文献   

18.
In this work, two dimensional laminar flow of different nanofluids flow inside a triangular duct with the existence of vortex generator is numerically investigated. The governing equations of mass, momentum and energy were solved using the finite volume method (FVM). The effects of type of the nanoparticles, particle concentrations, and Reynolds number on the heat transfer coefficient and pressure drop of nanofluids are examined. Reynolds number is ranged from 100 to 800. A constant surface temperature is assumed to be the thermal condition for the upper and lower heated walls. In the present work, three nanofluids are examined which are Al2O3, CuO and SiO2 suspended in the base fluid of ethylene glycol with nanoparticles concentrations ranged from 1 to 6%. The results show that for the case of SiO2–EG, at ? = 6% and Re = 800, it is found that the average Nusselt number is about 50.0% higher than the case of Re = 100.  相似文献   

19.
A numerical study on natural convective heat transfer inside an enclosure with center heater using nanofluid has been carried out. The effect of different length of center heater on the flow and temperature fields is analysed for different Rayleigh numbers. Results are displayed in terms of streamlines, isotherms, mid height velocity profile and average Nusselt number. The numerical results reveal heat transfer increases with increasing heater length at both vertical and horizontal positions for increasing values of Rayleigh numbers. In particular, a higher increase in heat transfer is obtained with heater situated with vertical position of maximum length. Also it is obtained that enhancement of heat transfer is high for Ag - water nanofluid than CuO -water and Al2O3 -water nanofluids.  相似文献   

20.
波纹内翅片管中对流换热与阻力特性的实验研究   总被引:7,自引:1,他引:6  
本文研究了空气在一种波纹内翅片管内强制对流的换热与阻力特性,得出了所测参数范围内换热Nusselt数和阻力系数f随Reynolds数变化的实验关联式,并与类似波纹内翅片管的换热效果进行了比较,结果表明波纹内翅片管换热强化的程度与其结构有很大的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号