首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
InAs quantum dots (QDs) were grown on InP substrates by metalorganic chemical vapor deposition. The width and height of the dots were 50 and 5.8 nm, respectively on the average and an areal density of 3.0×1010 cm−2 was observed by atomic force microscopy before the capping process. The influences of GaAs, In0.53Ga0.47As, and InP capping layers (5–10 ML thickness) on the InAs/InP QDs were studied. Insertion of a thin GaAs capping layer on the QDs led to a blue shift of up to 146 meV of the photoluminescence (PL) peak and an InGaAs capping layer on the QDs led to a red shift of 64 meV relative to the case when a conventional InP capping layer was used. We were able to tune the emission wavelength of the InAs QDs from 1.43 to 1.89 μm by using the GaAs and InGaAs capping layers. In addition, the full-width at half-maximum of the PL peak decreased from 79 to 26 meV by inserting a 7.5 ML GaAs layer. It is believed that this technique is useful in tailoring the optical properties of the InAs QDs at mid-infrared regime.  相似文献   

2.
To investigate the strain characteristics of InAs quantum dots grown on (001) GaAs by solid source molecular beam epitaxy we have compared calculated transition energies with those obtained from photoluminescence measurements. Atomic force microscopy shows the typical lateral size of the quantum dots as 20–22 nm with a height of 10–12 nm, and photoluminescence spectra show strong emission at 1.26 μ m when the sample is capped with a GaAs layer. The luminescence peak wavelength is red-shifted to 1.33 μ m when the dots are capped by an In0.4Ga0.6As layer. Excluding the strain it is shown that the theoretical expectation of the ground-state optical transition energy is only 0.566 eV (2.19 μ m), whereas a model with three-dimensionally-distributed strain results in a transition energy of 0.989 eV (1.25 μ m). It has thus been concluded that the InAs quantum dot is spatially strained. The InGaAs capping layer reduces the effective barrier height so that the transition energy becomes red-shifted.  相似文献   

3.
The time resolved reflectance anisotropy spectroscopy (RAS) measurement at 4.2 eV was used for the optimization of technological parameters for Stranski–Krastanow quantum dot (QD) formation. TMIn dosage and waiting time following InAs deposition during which QD formation takes place were optimized.RAS measurement helps us to study the MOVPE surface processes such as QD formation, dissolution of In from InAs QDs during the growth of GaAs capping layer or recovery of epitaxial surface from As deficiency, when As partial pressure is increased. We have shown, that the recovery of epitaxial surface from As deficiency is rather a slow process of the order of tens of seconds.We have for the first time observed in situ the mechanism of In atoms migration from QDs during GaAs capping layer growth. First the GaAs layer is formed and then the In migration from QDs follows. These two processes do not start at the same time, the In dissolution is delayed. Conclusions extracted from RAS measurement are in agreement with photoluminescence results.  相似文献   

4.
We report the growth of self-assembled InAs/GaAs quantum dots (QDs) on germanium-on-insulator-on-silicon (GeOI/Si) substrate by antimony-mediated metal organic chemical vapor deposition. The influence of various growth procedures for the GaAs buffer layer on the QD formation and optical quality was investigated. We obtained QDs with density above 1010 cm−2, and ground state emission in the 1.3 μm band at room temperature. These results demonstrate the promising suitability of germanium-on-insulator for the monolithic integration of QD-based and other GaAs-based photonic devices on silicon.  相似文献   

5.
张志伟  赵翠兰  孙宝权 《物理学报》2018,67(23):237802-237802
采用双层耦合量子点的分子束外延生长技术生长了InAs/GaAs量子点样品,把量子点的发光波长成功地拓展到1.3 μm.采用光刻的工艺制备了直径为3 μm的柱状微腔,提高了量子点荧光的提取效率.在低温5 K下,测量得到量子点激子的荧光寿命约为1 ns;单量子点荧光二阶关联函数为0.015,显示单量子点荧光具有非常好的单光子特性;利用迈克耳孙干涉装置测量得到单光子的相干时间为22 ps,对应的谱线半高全宽度为30 μeV,且荧光谱线的线型为非均匀展宽的高斯线型.  相似文献   

6.
利用分子束外延技术(MBE),在GaAs(001)衬底上自组织生长了不同结构的InAs量子点样品,并制备了量子点红外探测器件。利用原子力显微镜(AFM)和光致发光(PL)光谱研究了量子点的表面结构、形貌和光学性质。渐变InGaAs层的插入有效地释放了InAs量子点所受的应力,抑制了量子点中In组分的偏析,提高了外延层的生长质量,降低了势垒高度,使InAs量子点荧光波长红移。伏安特性曲线和光电流(PC)谱结果表明,生长条件的优化提高了器件的红外响应,具有组分渐变的InGaAs层的探测器响应波长发生明显红移。  相似文献   

7.
The influence of layer-by-layer temperature and substrate rotation on the optical property and uniformity of self-assembled InAs/In0.2Ga0.8As/GaAs quantum dots (QDs) gown with an As2 source was investigated. An improvement in the optical property of QDs was obtained by the precise control and optimization of growth temperature utilized for each layer, i.e., InAs QDs, InGaAs quantum wells, GaAs barriers and AlGaAs layers, respectively. By using a substrate rotation, the QD density increased from ∼1.4×1010 to ∼3.2×1010 cm−2 and its size also slightly increased, indicating a good quality of QDs. It is found that the use of an appropriate substrate rotation during growth improves the room-temperature (RT) optical property and uniformity of QDs across the wafer. For the QD sample with a substrate rotation of 6 rpm, the RT photoluminescence (PL) intensity is much higher and the standard deviation of RT-PL full-width at half-maximum is decreased by 35% compared to that grown without substrate rotation.  相似文献   

8.
We report systematic temperature-dependent measurements of photoluminescence spectra in self-assembled InGaAs/InAs/GaAs quantum dots (QDs). We have studied the rise in temperature of the ground-state homogeneous linewidth.A theoretical model is presented and accounts for the phonon-assisted broadening of this transition in individual QD. We have estimated the homogeneous linewidth of an individual QD from PL spectra of self-organized InAs/GaAs QDs by isolating the PL of each individual QD and fitting the narrow line associated with self-organized QDs through a Lorentzian convoluted by a Gaussian. We have observed a strong exciton–LO–phonon coupling (γLO) which becomes the dominating contribution to the linewidth above the temperature of 45 K. We have also derived the activation energy (ΔE) of the exciton–LO–phonon coupling, zero temperature linewidth (Γ0) and the exciton-LA-phonon coupling parameter (γAc). We report that our values are close to the values found in the literature for single InGaAs QD and InAs QD.  相似文献   

9.
We apply 8-band k.p model to study InAs/GaAs quantum dots (QDs). The strain was calculated using the valence force field (VFF) model which includes the four nearest-neighbour interactions. For the optical properties, we take into account both homogeneous and non-homogeneous broadening for the optical spectrum. Our simulation result is in good agreement with the experimental micro-photoluminescence (μ-PL) result which is from InAs/GaAs QD vertical cavity surface emitting lasers (VCSELs) structure wafer at room temperature. Accordingly, our simulation model is used to predict the QD emission from this QD-VCSELs structure wafer at different temperature ranging from 200–400 K. The simulation results show a decrease of 41 meV of QD ground state (GS) transition energy from 250–350 K. The changes of QDGS transition energy with different temperature indicate the possible detuning range for 1.3-μm wave band QD-VCSELs applications without temperature control. Furthermore, QD differential gain at 300 K is computed based on this model, which will be useful for predicting the intrinsic modulation characteristics of QD-VCSELs.  相似文献   

10.
王晓东  刘会赟  牛智川  封松林 《物理学报》2000,49(11):2230-2234
研究了不同In组分的InxGa1-xAs(0≤x≤0.3)覆盖层对自组织InAs量子点的结构及发光特性的影响.透射电子显微镜和原子力显微镜表明,InAs量子点在InGaAs做盖层时所受应力较GaAs盖层时有所减小,并且x=0.3时,InGaAs在InAs量子点上继续成岛.随x值的增大,量子点的光荧光峰红移,但随温度的变化发光峰峰位变化不明显.理论分析表明InAs量子点所受应力及其均匀性的变化分别是导致上述现象的主要原因. 关键词: 量子点 盖层 应力 红移  相似文献   

11.
Xu PF  Ji HM  Xiao JL  Gu YX  Huang YZ  Yang T 《Optics letters》2012,37(8):1298-1300
The carrier induced refractive index change and linewidth enhancement factor α due to ground-state (GS) and excited-state (ES) transitions have been compared by measuring the optical gain spectra from an InAs/GaAs quantum dot (QD) laser structure. It is shown that the ES transition exhibits a reduced α-factor compared to the value due to the GS transition. This result can be explained by the α-factor due to the ES transition having a smaller increase from the non-resonant carriers in the combined state of the wetting layer and InGaAs strain reducing layer than the α-factor increase due to the GS transition, since the relaxation time for carriers from the combined state of the wetting layer and InGaAs strain reducing layer to the ES is shorter than to the GS. The result reported here shows another advantage of using ES QD lasers for optical communication, in addition to their higher modulation speed.  相似文献   

12.
Optical characterization of single quantum dots (QDs) by means of micro-photoluminescence (μPL) will be reviewed. Both QDs formed in the Stranski–Krastanov mode as well as dots in the apex of pyramidal structures will be presented. For InGaAs/GaAs dots, several excitonic features with different charge states will be demonstrated. By varying the magnitude of an external electric or magnetic field and/or the temperature, it has been demonstrated that the transportation of carriers is affected and accordingly the charge state of a single QD can be tuned. In addition, we have shown that the charge state of the QD can be controlled also by pure optical means, i.e. by altering the photo excitation conditions. Based on the experience of the developed InAs/GaAs QD system, similar methods have been applied on the InGaN/GaN QD system.  相似文献   

13.
We report structural and optical properties of In0.5Ga0.5As/GaAs quantum dots (QDs) in a 100 Å-thick In0.1Ga0.9As well grown by repeated depositions of InAs/GaAs short-period superlattices with atomic force microscope, transmission electron microscope (TEM) and photoluminescence (PL) measurement. The QDs in an InGaAs well grown at 510 °C were studied as a function of n repeated deposition of 1 monolayer thick InAs and 1 monolayer thick GaAs for n=5–10. The heights, widths and densities of dots are in the range of 6–22.0 nm, 40–85 nm, and 1.6–1.1×1010/cm2, respectively, as n changes from 5 to 10 with strong alignment along [1 −1 0] direction. Flat and pan-cake-like shape of the QDs in a well is found in TEM images. The bottoms of the QDs are located lower than the center of the InGaAs well. This reveals that there was intermixing—interdiffusion—of group III materials between the InGaAs QD and the InGaAs well during growth. All reported dots show strong 300 K-PL spectrum, and 1.276 μm (FWHM: 32.3 meV) of 300 K-PL peak was obtained in case of 7 periods of the QDs in a well, which is useful for the application to optical communications.  相似文献   

14.
We have systematically studied the effect of an InxGa1−xAs insertion layer (IL) on the optical and structural properties of InAs quantum dot (QD) structures. A high density of 9.6×1010 cm−2 of InAs QDs with an In0.3Ga0.7As IL has been achieved on a GaAs (1 0 0) substrate by metal organic chemical vapor deposition. A photoluminescence line width of 25 meV from these QDs has been obtained. We attribute the high density and high uniformity of these QDs to the use of the IL. Our results show that the InGaAs IL is useful for obtaining high-quality InAs QD structures for devices with a 1.3 μm operation.  相似文献   

15.
We have demonstrated the selective area growth of stacked self-assembled InAs quantum dot (QD) arrays in the desired regions on a substrate and confirmed the photoluminescence (PL) emission exhibited by them at room temperature. These InAs QDs are fabricated by the use of a specially designed atomic force microscope cantilever referred to as the Nano-Jet Probe (NJP). By using the NJP, two-dimensional arrays with ordered In nano-dots are fabricated in the desired square regions on a GaAs substrate and directly converted into InAs QD arrays through the subsequent annealing by the irradiation of As flux. By using the converted QD arrays as strain templates, self-organized InAs QDs are stacked. These stacked QDs exhibit the PL emission peak at a wavelength of 1.02 μm.  相似文献   

16.
We investigated the stress evolution during molecular-beam epitaxy of bilayer InAs/GaAs(001) quantum dot (QD) structures in real time and with sub-monolayer precision using an in-situ cantilever beam setup. During growth of the InAs at 470 °C a stress of 5.1 GPa develops in the wetting layer, in good agreement with the theoretical misfit stress. At a critical thickness of 1.5 monolayers the strain is relieved by the QD formation. In the case of InAs/GaAs bilayer structures, the second InAs layer grows identical to the first for GaAs spacer thicknesses exceeding ∼13 nm. For thinner spacers the critical thickness for the 2D/3D transition in the second layer decreases. The stress of the second InAs layer does not reach the value of the first, indicating that InAs QDs grow on partially strained areas due to the strain field of the previous InAs layer. PACS 68.35.-p; 68.35.Gy; 68.65.Hb; 81.07.Ta; 81.10.Aj  相似文献   

17.
We have investigated effects of growth temperature of thin GaAs capping layer in the initial stage of indium-flush process using atomic force microscopy and microscopic photoluminescence (μ-PL) methods. The shape of capped InAs quantum dot (QD) and its μ-PL properties are sensitive to the growth temperature of thin GaAs capping layer. In the case of the high temperature cap, the QD shape in initial capping stage is elongated along the [1 1 −0] direction, and μ-PL spectrum shows several peaks accompanied with indefinite peaks. On the other hand, the low temperature case, the QD shape is kept in isotropic and μ-PL spectrum shows distinctive emissions from excitonic states of the QD with suppressed indefinite peaks. These results indicate that the low temperature capping is effective to keep an isotropic shape of QD and suppress indefinite peaks.  相似文献   

18.
Self-assembled InAs quantum dots (QDs) with high-density were grown on GaAs(0 0 1) substrates by antimony (Sb)-mediated molecular beam epitaxy technique using GaAsSb/GaAs buffer layer and InAsSb wetting layer (WL). In this Sb-mediated growth, many two-dimensional (2D) small islands were formed on those WL surfaces. These 2D islands provide high step density and suppress surface migration. As the results, high-density InAs QDs were achieved, and photoluminescence (PL) intensity increased. Furthermore, by introducing GaAsSb capping layer (CL), higher PL intensity at room temperature was obtained as compared with that InGaAs CL.  相似文献   

19.
The photoluminescence (PL) inhomogeneity has been studied in InAs quantum dots (QDs) embedded in the symmetric In0.15Ga0.85As/GaAs quantum wells (QWs) with QDs grown at different temperatures. It was shown that three reasons are responsible for the emission inhomogeneity in studied QD structures: (i) the high concentration of nonradiative recombination centers in the capping In0.15Ga0.85As layer at low QD growth temperatures, (ii) the QD density and size distributions for the structure with QD grown at 510 °C, (iii) the high concentration of nonradiative recombination centers in the GaAs barrier at higher QD growth temperatures.  相似文献   

20.
Formation of a multimodal quantum dot (QD) ensemble by strained layer epitaxy of InAs on GaAs near the critical value for the onset of the 2D-3D transition is studied. Reflection anisotropy spectroscopy is employed to confirm that a smooth surface is maintained during strained layer growth prior to QD formation. Instantaneous capping after deposition leads to InAs quantum wells with some thickness flucuations. Multimodal QD InAs ensembles form after an at least short growth interruption prior to cap layer deposition. The QDs consist of pure InAs with heights varying in steps of complete InAs monolayers. Related exciton energies indicate a simultaneous increase of both height and lateral extension, i.e. a shell-like increase of sizes. The formation of the multimodal QD ensemble is described by a kinetic approach. A growth scenario is presented where QDs having initially shorter base length stop vertical growth at a smaller height, accounting for the experimentally observed shell-like sub-ensemble structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号