首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has been recently demonstrated that carbon nanotubes (CNTs) represent a new type of chemical sensor capable of detecting a small concentration of molecules such as CO, NO2, NH3.In this work, CNTs were synthesized by chemical vapor deposition (CVD) on the SiO2/Si substrate by decomposition of acetylene (C2H2) on sputtered Ni catalyst nanoparticles. Their structural properties are studied by atomic force microscopy, high-resolution scanning electron microscopy (HRSEM) and Raman spectroscopy. The CNTs grown at 700 °C exhibit a low dispersion in size, are about 1 μm long and their average diameter varies in the range 25–60 nm as a function of the deposition time. We have shown that their diameter can be reduced either by annealing in oxygen environment or by growing at lower temperature (less than 600 °C).We developed a test device with interdigital Pt electrodes on an Al2O3 substrate in order to evaluate the CNTs-based gas sensor capabilities. We performed room temperature current–voltage measurements for various gas concentrations. The CNT films are found to exhibit a fast response and a high sensitivity to NH3 gas.  相似文献   

2.
Carbon nanosheets were synthesized by microwave plasma-enhanced chemical vapor deposition method on carbon nanotubes substrate which was treated by hydrogen plasma. The results showed that the diameters of carbon nanotubes first got thick and then “petal-like” carbon nanosheets were grown on the outer wall of carbon nanotubes. The diameters of carbon nanotubes without and with carbon nanosheets were 100-150 and 300-500 nm, respectively. Raman spectrum indicated the graphite structure of carbon nanotubes/carbon nanosheets. The hydrogen plasma treatment and reaction time greatly affected the growth and density of carbon nanosheets. Based on above results, carbon nanosheets/carbon nanotubes probably have important applications as cold cathode materials and electrode materials.  相似文献   

3.
Nitrogen-doped carbon nanotubes (CNx) were prepared by ultrasonic spray pyrolysis from mixtures of imidazole and acetonitrile. Imidazole, as an additive, was used to control the structure and nitrogen doping in CNx by adjusting its concentration in the mixtures. Scanning electron microscopy observation showed that the addition of imidazole increased the nanotube growth rate and yield, while decreased the nanotube diameter. Transmission electron microscopy study indicated that the addition of imidazole promoted the formation of a dense bamboo-like structure in CNx. X-ray photoelectron spectroscopy analysis demonstrated that the nitrogen content varied from 3.2 to 5.2 at.% in CNx obtained with different imidazole concentrations. Raman spectra study showed that the intensity ratio of D to G bands gradually increased, while that of 2D to G bands decreased, due to increasing imidazole concentration. The yield of CNx made from mixtures of imidazole and acetonitrile can reach 192 mg in 24 min, which is 15 times that of CNx prepared from only acetonitrile. The aligned CNx, with controlled nitrogen doping, tunable structure and high yield, may find applications in developing non-noble catalysts and novel catalyst supports for fuel cells.  相似文献   

4.
A series of nine catalysts containing Ce/Fe and Mo/Fe at various loadings on MgO supports have been studied as catalysts for chemical vapour deposition (CVD) of single-walled carbon nanotubes (SWCNTs) using a methane carbon source. Our results show that the Ce/Fe system is very suitable as a catalyst that favours SWCNT growth, and we question the special importance that has been attributed to Mo as an additive to Fe-based catalysts for SWCNT growth, as it appears that Ce is equally effective. Our results indicate that dehydroaromatization (DHA) is not a defining step for the growth mechanism, as has been suggested for Mo/Fe systems previously, and show that Ce and Mo do not seriously perturb the well-known Fe/MgO system for growth of high quality SWCNT. Using Raman spectroscopy, we have shown that the Ce/Fe/MgO catalyst system favours growth of SWCNTs with a different distribution of chiralities compared to the analogous Mo/Fe/MgO system.  相似文献   

5.
Carbon nanotubes (CNTs) are classified among the most promising novel materials due to their exceptional physical properties. Still, optimal fabrication of carbon nanotubes involves a number of challenges. Whatever be the fabrication method, a process optimization can be evolved only on the basis of a good theoretical model to predict the parametric influences on the final product. The work reported here investigates the dependence of the deposition parameters on the controllable parameters for carbon nanotube growth during Chemical vapor deposition (CVD), through a chemical kinetic model. The theoretical model consisted of the design equations and the energy balance equations, based on the reaction kinetics, for the plug flow and the batch reactor, which simulate the CVD system. The numerical simulation code was developed in-house in a g++ environment. The results predicted the growth conditions for CNT: the deposition temperature, pressure and number of atoms, which were found to be influenced substantially by the initial controllable parameters namely the temperature, volumetric flow rate of the carbon precursor, and the reaction time. An experimental study was also conducted on a CVD system developed in the laboratory, to benchmark the computational results. The experimental results were found to agree well with the theoretical predictions obtained from the model.  相似文献   

6.
Two surfactant-templated synthetic routes are developed for the preparation of new types of mesoporous molecular sieves, Zr-MCM-41 and Zr-MCM-48, using different Si sources but keeping the same zirconium precursor (zirconium-n-propoxide). When fumed silica was used as Si precursor, a Zr-MCM-48 material of cubic structure was formed with a surface area of 654.8 m2/g and an unimodal pore diameter distribution. It shows low stability: after calcination at 600 °C, the ordered structure was transformed into a relatively disordered worm-like mesostructure with many defects and silanol groups. The use of tetraethyl orthosilicate as Si source led to the formation of a Zr-MCM-41 mesoporous solid, which had good thermal stability and a highly ordered hexagonal arrangement, with a surface area 677.9 m2/g and an uniform pore diameter distribution. Fourier transform infrared (FT-IR) characterization and 29Si NMR analysis confirm that zirconium ions indeed incorporated into the framework of the solid. The in situ FT-IR spectroscopy of pyridine adsorption reveals that both, Lewis and Brönsted acid sites, were formed on the surface of these mesoporous materials. The strength and number of the Brönsted acid sites of the Zr-MCM-48 solid were greater than those of the Zr-MCM-41, due to a lower degree of condensation reaction during the synthesis that led to more structural defects in the framework and more silanol groups stretching from the solid surface.  相似文献   

7.
Co (Ni or Cu)-MCM-41 mesoporous molecular sieves with different amount of metal were synthesized by using cetyltrimethyl ammonium bromide as a template and by a novel microwave irradiation method. These samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and N2 physical adsorption. The experimental results show that Co (Ni or Cu)-MCM-41 mesoporous molecular sieves were successfully synthesized. When the as-synthesized samples were calcined at 550 °C for 10 h, the template was effectively removed. Under microwave irradiation condition, Co-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 745.7-1188.8 m2/g and average pore sizes in a range of 2.46-2.75 nm; Ni-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 625.8-1161.3 m2/g and average pore sizes of ca. 2.7 nm; Cu-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 601.6-1142.9 m2/g and average pore sizes in a range of 2.46-2.76 nm. On the other hand, with increasing the introduced metal amount, the specific surface area and pore volume of the synthesized Co (Ni or Cu)-MCM-41 mesoporous molecular sieves became small, and the mesoporous ordering of the samples became poor. Under the comparable synthesis conditions, the synthesized Co-MCM-41 mesoporous molecular sieve has a bigger specific surface area and a more uniform pore distribution as compared with the synthesized Ni-MCM-41and Cu-MCM-41 mesoporous molecular sieves.  相似文献   

8.
Iron, cobalt and a mixture of iron and cobalt incorporated mesoporous MCM-41 molecular sieves were synthesised by hydrothermal method and used to investigate the rules governing their nanotube producing activity. The catalysts were characterised by XRD and N2 sorption studies. The effect of the catalysts has been investigated for the production of carbon nanotubes at an optimised temperature 750 °C with flow rate of N2 and C2H2 is 140 and 60 ml/min, respectively for a reaction time 10 min. Fe-Co-MCM-41 catalyst was selective for carbon nanotubes with low amount of amorphous carbon with increase in single-walled carbon nanotubes (SWNTs) yield at 750 °C. Formation of nanotubes was studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Transmission electron microscope and Raman spectrum was used to follow the quality and nature of carbon nanotubes formed and the graphitic layers and disordered band, which shows the clear evidence for the formation of SWNTs, respectively. The result propose that the diameter of the nanotubes in the range of 0.78-1.35 nm. Using our optimised conditions for this system, Fe-Co-MCM-41 showed the best results for selective SWNTs with high yield when compared with Fe-MCM-41 and Co-MCM-41.  相似文献   

9.
Spray pyrolysis chemical vapor deposition (CVD) in the absence of hydrogen at low carrier gas flow rates has been used for the growth of carbon nanotubes (CNTs). A parametric study of the carbon nanotube growth has been conducted by optimizing various parameters such as temperature, injection speed, precursor volume, and catalyst concentration. Experimental observations and characterizations reveal that the growth rate, size and quality of the carbon nanotubes are significantly dependent on the reaction parameters. Scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy techniques were employed to characterize the morphology, structure and crystallinity of the carbon nanotubes. The synthesis process can be applied to both semiconducting silicon wafer and conducting substrates such as carbon microfibers and stainless steel plates. This approach promises great potential in building various nanodevices with different electron conducting requirements. In addition, the absence of hydrogen as a carrier gas and the relatively low synthesis temperature (typically 750 °C) qualify the spray pyrolysis CVD method as a safe and easy way to scale up the CNT growth, which is applicable in industrial production.  相似文献   

10.
In this research, the effect of Ni, Pd and Ni-Pd catalysts have studied on morphology and structure of synthesized multi-wall carbon nanotubes (MWCNTs). Initially, thin films of Ni (with two thicknesses of 10 and 20 nm), Pd/Ni (5/10 nm) and Pd (10 nm) were deposited as catalysts on SiO2 (60 nm)/Si(1 0 0) substrates, using dc magnetron sputtering technique. The deposited films were annealed at 900 °C in ammonia environment for 45 min, in order to obtain nano-structured catalyst on the surface. Using scanning electron microscopy (SEM), the average size of Ni nano-islands (synthesized by the 10 and 20 nm Ni films), Pd and Ni-Pd nano-islands were measured about 55, 110, 45 and 50 nm, respectively. According to X-ray photoelectron spectroscopy analysis (XPS), the ratio of Ni/Pd on the surface was about 3 for the bilayer sample. The CNTs were synthesized on the nano-island catalysts at 940 °C in CH4 ambient using a thermal chemical vapor deposition method. The results revealed that average diameter of the CNTs were about 70, 110, 120 nm for Ni, Ni-Pd and Pd catalysts, respectively. Raman spectra of the MWCNTs showed that intensity ratio of two main peaks located in the range of 1550-1600 and 1250-1450 cm−1 (as a quality factor for the CNTs) for Ni, Pd and Ni-Pd catalysts were 1.42, 0.91 and 0.85, respectively. Therefore, based on our data analysis, although addition of Pd to Ni catalyst caused a considerable reduction in the quality of the grown MWCNTs as compared to the pure Ni catalyst, but it resulted in an enhancement in the methane decomposition rate. For the pure Pd catalyst samples, both a slow methane decomposition rate as compared with Ni-Pd catalyst samples and a poor quality of CNTs were observed as compared with the Ni catalyst, under similar experimental conditions.  相似文献   

11.
Well-aligned carbon nanotubes (CNTs) of high quality were synthesized by pyrolysis of phenolic resin at 800 °C in anodic alumina oxide (AAO) pores under argon protection. The innocuous source materials and safe operational conditions permit this method to synthesize well-aligned CNTs in large-scale and low cost. The formation mechanism of the synthesized CNTs is also proposed in this work by a series of visual sketches and is proved with obvious evidence. Firstly, phenolic resin nanotubes form in the template pores through the evaporation of solvent. Heat treatment then transfers these tubes into CNTs.  相似文献   

12.
In this paper, a site-selective catalytic chemical vapor deposition synthesis of carbon nanotubes on silicon-based substrates has been developed in order to get horizontally oriented nanotubes for field effect transistors and other electronic devices. Properly micro-fabricated silicon oxide and polysilicon structures have been used as substrates. Iron nanoparticles have been obtained both from a thin Fe film evaporated by e-gun and from iron nitrate solutions accurately dispersed on the substrates. Single-walled nanotubes with diameters as small as 1 nm, bridging polysilicon and silicon dioxide “pillars”, have been grown. The morphology and structure of CNTs have been characterized by SEM, AFM and Raman spectroscopy.  相似文献   

13.
The structure and defects in the walls and cavities of carbon nanotubes were examined by electron diffraction, transmission electron microscopy, energy dispersive X-ray analysis and Raman spectroscopy. The predominating defects in the walls of the nanotubes are graphite nanocrystals having a preferential orientation in the direction of the nanotube axis, and another significant type of defects are particles of the catalyst in the nanotube cavities. In the cavities, also the presence of molybdenum was proved having its origin in the catalyst.  相似文献   

14.
We report the variation of yield and quality of carbon nanotubes (CNTs) grown by chemical vapor deposition (CVD) of methane on iron oxide-MgO at 900-1000 °C for 1-60 min. The catalyst was prepared by impregnation of MgO powder with iron nitrate, dried, and calcined at 300 °C. As calcined and unreduced catalyst in quartz reactor was brought to the synthesis temperature in helium flow in a few minutes, and then the flow was switched to methane. The iron oxide was reduced to iron nanoparticles in methane, while the CNTs were growing.TEM micrographs, in accordance with Raman RBM peaks, indicate the formation of mostly single wall carbon nanotubes of about 1.0 nm size. High quality CNTs with IG/ID Raman peak ratio of 14.5 are formed in the first minute of CNTs synthesis with the highest rate. Both the rate and quality of CNTs degrades with increasing CNTs synthesis time. Also CNTs quality sharply declines with temperature in the range of 900-1000 °C, while the CNTs yield passes through a maximum at 950 °C. About the same CNTs lengths are formed for the whole range of the synthesis times. A model of continuous emergence of iron nanoparticle seeds for CNTs synthesis may explain the data. The data can also provide information for continuous production of CNTs in a fluidized bed reactor.  相似文献   

15.
We report on the controllable growth of individual, uniform carbon nanotubes using thermal chemical vapor deposition (CVD). We performed a detailed study of the various factors influencing the growth of single nanotubes. In particular, we investigated the role played by catalyst layer thickness, catalyst dot size, deposition temperature, and gas source pressure on the growth process of straight, single nanotubes. Straight, individual nanotubes with uniform diameter can be obtained by decomposition of 0.1 mbar of acetylene at a temperature of 800 °C over a 5 nm thick nickel film that is patterned into square dots with dimensions below 500 nm. We compare the performance of thermal CVD and of plasma enhanced CVD for growing individual nanotubes.  相似文献   

16.
Single wall carbon nanotubes were synthesized from thermal pyrolysis of methane on a FeMo/MgO catalyst by radio frequency catalytic chemical vapor deposition (RF-CVD) using argon as a carrier gas. Controlled amounts of hydrogen (H2/CH4=0-1 v/v) were introduced in separate experiments along with the carbon source. The properties and morphology of the synthesized single wall carbon nanotubes were monitored by transmission electron microscopy, Raman scattering, and thermogravimetric analysis. The nanotubes with the highest crystallinity were obtained with H2/CH4=0.6. By monitoring the Radial Breathing Modes present in the Raman spectra of the single-wall carbon nanotube samples, the variation of the structural and morphological properties of the carbon nanotubes with the flow level of hydrogen, reflect changes of the catalyst systems induced by the presence of hydrogen.  相似文献   

17.
18.
Single-walled carbon nanotubes (SWCNTs) and few-walled carbon nanotubes (FWCNTs) have been selectively synthesized by plasma enhanced chemical vapor deposition at a relative low temperature (550 °C) by tuning the thickness of iron catalyst. The parametric study and the optimization of the nanotube growth were undertaken by varying inductive power, temperature, catalyst thickness, and plasma to substrate distance. When an iron film of 3-5 nm represented the catalyst thickness for growing FWCNT arrays, SWCNTs were synthesized by decreasing the catalyst thickness to 1 nm. The nanotubes were characterized by field emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Electron field emission properties of the nanotubes indicate that the SWCNTs exhibit lower turn-on field compared to the FWCNTs, implying better field emission performance.  相似文献   

19.
Synthesis of carbon nanotubes described in the present work is based on activation of methane in a hot filament CVD reactor and subsequent creation of nanostructures on a catalyst pre-treated polished surface of silicon. An essential step of the synthesis is the use of natural minerals as catalysts. We have studied the catalyst parameters, the way of its application and the amount of Fe3+ cations on the surface of aluminosilicates on the quality of the grown nanotube layers. The growth of carbon nanotubes catalyzed by montmorillonite and zeolite (clinoptilolite) was confirmed by scanning electron microscopy and Raman spectroscopy.  相似文献   

20.
In this work, the uniform and vertically aligned single wall carbon nanotubes (SWCNTs) have been grown on Iron (Fe) deposited Silicon (Si) substrate by plasma enhanced chemical vapor deposition (PECVD) technique at very low temperature of 550 °C. The as-grown samples of SWCNTS were characterized by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM) and Raman spectrometer. SWCNT based chemiresistor gas sensing device was fabricated by making the proper gold contacts on the as-grown SWCNTs. The electrical conductance and sensor response of grown SWCNTs have been investigated. The fabricated SWCNT sensor was exposed to ammonia (NH3) gas at 200 ppm in a self assembled apparatus. The sensor response was measured at room temperature which was discussed in terms of adsorption of NH3 gas molecules on the surface of SWCNTs. The achieved results are used to develope a miniaturized gas sensor device for monitoring and control of environment pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号