首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the structural and electrical properties of AlxIn1xN/AlN/GaN heterostructures with AlGaN buffers grown by MOCVD, which can be used as an alternative to AlInN HEMT structures with GaN buffer. The effects of the GaN channel thickness and the addition of a content graded AlGaN layer to the structural and electrical characteristics were studied through variable temperature Hall effect measurements, high resolution XRD, and AFM measurements. Enhancement in electron mobility was observed in two of the suggested AlxIn1?xN/AlN/GaN/Al0.04Ga0.96N heterostructures when compared to the standard AlxIn1xN/AlN/GaN heterostructure. This improvement was attributed to better electron confinement in the channel due to electric field arising from piezoelectric polarization charge at the Al0.04Ga0.96N/GaN heterointerface and by the conduction band discontinuity formed at the same interface. If the growth conditions and design parameters of the AlxIn1?xN HEMT structures with AlGaN buffers can be modified further, the electron spillover from the GaN channel can be significantly limited and even higher electron mobilities, which result in lower two-dimensional sheet resistances, would be possible.  相似文献   

2.
宋杰  许福军  黄呈橙  林芳  王新强  杨志坚  沈波 《中国物理 B》2011,20(5):57305-057305
The temperature dependence of carrier transport properties of AlxGa1-xN/InyGa1-yN/GaN and AlxGa1-xN/GaN heterostructures has been investigated.It is shown that the Hall mobility in Al0.25Ga0.75N/In0.03Ga0.97N/GaN heterostructures is higher than that in Al0.25Ga0.75N/GaN heterostructures at temperatures above 500 K,even the mobility in the former is much lower than that in the latter at 300 K.More importantly,the electron sheet density in Al0.25Ga0.75N/In0.03Ga0.97N/GaN heterostructures decreases slightly,whereas the electron sheet density in Al0.25Ga0.75N/GaN heterostructures gradually increases with increasing temperature above 500 K.It is believed that an electron depletion layer is formed due to the negative polarization charges at the InyGa1-yN/GaN heterointerface induced by the compressive strain in the InyGa1-yN channel,which e-ectively suppresses the parallel conductivity originating from the thermal excitation in the underlying GaN layer at high temperatures.  相似文献   

3.
The influence of the width of a lattice-matched Al0.82In0.18N/GaN single quantum well (SQW) on the absorption coefficients and wavelength of the intersubband transition (ISBT) has been investigated by solving the Schrödinger and Poisson equations self-consistently. The wavelength of 1—2 ISBT increases with L, the thickness of the single quantum well, ranging from 2.88 μm to 3.59 μm. The absorption coefficients of 1—2 ISBT increase with L at first and then decrease with L, with a maximum when L is equal to 2.6 nm. The wavelength of 1—3 ISBT decreases with L at first and then increases with L, with a minimum when L is equal to 4 nm, ranging from approximately 2.03 μm to near 2.11 μm. The absorption coefficients of 1—3 ISBT decrease with L. The results indicate that mid-infrared can be realized by the Al0.82In0.18N/GaN SQW. In addition, the wavelength and absorption coefficients of ISBT can be adjusted by changing the width of the SQW.  相似文献   

4.
Electron transport properties in AlGaN/GaN heterostructures with different Al-contents have been investigated from room temperature up to 680 K. The temperature dependencies of electron mobility have been systematically measured for the samples. The electron mobility at 680 K were measured as 154 and 182 cm2/V·s for Al0.15Ga0.85N/GaN and Al0.40Ga0.60N/GaN heterostructures, respectively. It was found that the electron mobility of low Al-content Al0.15Ga0.85N/GaN heterostructure was less than that of high Al-content Al0.40Ga0.60N/GaN heterostructure at high temperature of 680 K, which is different from that at room temperature. Detailed analysis showed that electron occupations in the first subband were 75% and 82% at 700 K for Al0.15Ga0.85N/GaN and Al0.40Ga0.60N/GaN heterostructures, respectively, and the two dimensional gas (2DEG) ratios in the whole electron system were 30% and near 60%, respectively. That indicated the 2DEG was better confined in the well, and was still dominant in the whole electron system for higher Al-content AlGaN/GaN heterostructure at 700 K, while lower one was not. Thus it had a higher electron mobility. So a higher Al-content AlGaN/GaN heterostructure is more suitable for high-temperature applications.  相似文献   

5.
From the capacitance–voltage curves and current–voltage characteristics of the In0.17Al0.83N/AlN/GaN heterostructure field-effect transistors (HFETs) with side-Ohmic contacts and normal-Ohmic contacts, two-dimensional electron gas (2DEG) electron mobility was calculated. It is found that the polarization Coulomb field scattering (PCF) is closely related to the normal-Ohmic contact processing, and the PCF was weakened by side-Ohmic contact processing in In0.17Al0.83N/AlN/GaN HFETs, similar to that in AlGaN/AlN/GaN HFET devices. Further, due to the stronger spontaneous polarization in the thinner In0.17Al0.83N barrier layer, the influence of the gate bias on the PCF in In0.17Al0.83N/AlN/GaN HFETs is greater than that in AlGaN/AlN/GaN HFETs. As a result, the PCF in In0.17Al0.83N/AlN/GaN HFETs with side-Ohmic contacts is stronger than that in AlGaN/AlN/GaN HFETs with side-Ohmic contacts. Moreover, the 2DEG electron density in the In0.17Al0.83N/AlN/GaN HFETs with side-Ohmic contacts is increased by more than twice compared with the 2DEG electron density in the In0.17Al0.83N/AlN/GaN HFETs with normal-Ohmic contacts.  相似文献   

6.
The aluminium gallium nitride (AlGaN) barrier thickness dependent trapping characteristic of AlGaN/GaN heterostructure is investigated in detail by frequency dependent conductance measurements. The conductance measurementsin the depletion region biases (−4.8 V to −3.2 V) shows that the Al0.3Ga0.7N(18 nm)/GaN structure suffers from both the surface (the metal/AlGaN interface of the gate region) and interface (the AlGaN/GaN interface of the channel region) trapping states, whereas the AlGaN/GaN structure with a thicker AlGaN barrier (25 nm) layer suffers from only interface (the channel region of AlGaN/GaN) trap energy states in the bias region (−6 V to −4.2). The two extracted time constants of the trap levels are (2.6–4.59) μs (surface) and (113.4–33.8) μs (interface) for the Al0.3Ga0.7N(18 nm)/GaN structure in the depletion region of biases (−4.8 V to −3.2 V), whereas the Al0.3Ga0.7N (25 nm)/GaN structure yields only interface trap states with time constants of (86.8–33.3) μs in the voltage bias range of −6.0 V to −4.2 V. The extracted surface trapping time constants are found to be very muchless in the Al0.3Ga0.7N(18 nm)/GaN heterostructure compared to that of the interface trap states. The higher electric field formation across the AlGaN barrier causes de-trapping of the surface trapped electron through a tunnelling process for the Al0.3Ga0.7N(18 nm)/GaN structure, and hence the time constants of the surface trap are less.  相似文献   

7.
Strain-compensated InGaN quantum well (QW) active region employing tensile AlGaN barrier is analyzed. Its spectral stability and efficiency droop for dual-blue light-emitting diode (LED) are improved compared with those of the conventional InGaN/GaN QW dual-blue LED based on stacking structure of two In0.18Ga0.82N/GaN QWs and two In0.12Ga0.88N/GaN QWs on the same sapphire substrate. It is found that the optimal performance is achieved when the Al composition of strain-compensated AlGaN layer is 0.12 in blue QW and 0.21 in blue-violet QW. The improvement performance can be attributed to the strain-compensated InGaN-AlGaN/GaN QW that can provide a better carrier confinement and effectively reduce leakage current.  相似文献   

8.
Temperature dependence of the density of two-dimensional electron gas (2DEG) in Al0.18Ga0.82N/GaN heterostructures has been investigated by means of high temperature Hall measurements ranging from room temperature to 500 °C. It is found that the 2DEG density decreases with increasing temperature in the range from room temperature to 250 °C, and then increases with the temperature above 250 °C. It is thought that the decrease of the 2DEG density from room temperature to 250 °C is caused by the reduction of the conduction band offset at high temperatures. The increase of measured 2DEG density at higher temperatures is attributed to the background electron concentration in the GaN layer. Theoretical calculation of the 2DEG density in Al0.18Ga0.82N/GaN heterostructures at various temperatures is consistent with the experimental results using the multilayer Hall effect model. PACS 73.40.Kp; 73.61.Ey  相似文献   

9.
AlxGa1-x N/GaN调制掺杂异质结构的子带性质研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过低温和强磁场下的磁输运测量研究了Al0.22Ga0.78N/GaN调制掺杂异质结构中2DEG的子带占据性质和子带输运性质.在该异质结构的磁阻振荡中观察到了双子带占据现象,并发现2DEG的总浓度随第二子带浓度的变化呈线性关系.得到了该异质结构中第二子带被2DEG占据的阈值电子浓度为7.3×1012cm-2.采用迁移率谱技术得到了不同样品的分别对应于第一和第二子带的输运迁移率.发现当样品产生应变弛豫时第一子带的电子迁移 关键词: AlGaN/GaN异质结 二维电子气 子带占据 输运迁移率  相似文献   

10.
研究发展了用肖特基电容电压特性数值模拟确定调制掺杂AlxGa1-xN/GaN异质结中极化电荷的方法.在调制掺杂的Al0.22Ga0.78N/GaN异质结上制备了Pt肖特基接触,并对其进行了C-V测量.采用三维费米模型对调制掺杂的Al0.22Ga0.78N/GaN异质结上肖特基接触的C-V特性进行了数值模拟,分析了改变样品参数对C-V特性的影响.利用改变极化电荷、n-AlGaN 关键词: xGa1-xN/GaN异质结')" href="#">AlxGa1-xN/GaN异质结 极化电荷 电容电压特性 数值模拟  相似文献   

11.
The effect of built-in-polarization (BIP) field on thermal properties of InxGa1−xN/GaN heterostructure has been investigated. The thermal conductivity k of InxGa1−xN alloy has been estimated using Callaway's formula including the BIP field for In content x = 0, 0.1, 0.3, 0.5 and 0.9. This study reports that irrespective of In content, the room temperature k of InxGa1−xN/GaN heterostructure is enhanced by BIP field. The result predicts the existence of a characteristic temperature Tp at which both thermal conductivities (including and excluding BIP field) show a crossover. This gives signature of pyroelectric nature of InxGa1−xN alloy which arises due to variation of polarization with temperature indicating that thermal conductivity measurement can reveal pyroelectric nature. The pyroelectric transition temperature of InxGa1−xN alloy has been predicted for various x. The composition dependent nature of room temperature k for x = 0.1 and 0.5 are in line with prior experimental studies. The result can be used to minimize the self heating effect in InxGa1−xN/GaN heterostructures.  相似文献   

12.
杨福军  班士良 《物理学报》2012,61(8):87201-087201
对含有AlN插入层纤锌矿AlxGa1-xN/AlN/GaN异质结构,考虑有限厚势垒和导带弯曲的实际 异质结势,同时计入自发极化和压电极化效应产生的内建电场作用,采用数值自洽求解薛定谔方程和泊松方程, 获得二维电子气(2DEG)中电子的本征态和本征能级.依据介电连续模型和Loudon单轴晶体模型, 用转移矩阵法分析该体系中可能存在的光学声子模及三元混晶效应.进一步, 在室温下计及各种可能存在的光学声子散射,推广雷-丁平衡方程方法,讨论2DEG分布及二维电子迁移率的 尺寸效应和三元混晶效应.结果显示: AlN插入层厚度和AlxGa1-xN势垒层中Al组分的增加均会 增强GaN层中的内建电场强度,致使2DEG的分布更靠近异质结界面,使界面光学声子强于其他类型的 光学声子对电子的散射作用而成为影响电子迁移率的主导因素.适当调整AlN插入层的厚度和Al组分, 可获得较高的电子迁移率.  相似文献   

13.
A new method for magneto-transport characterisation of semiconductor heterostructures is presented. The classical model of mixed conduction, modified by corrections resulting from quantum effects, has been used in the analysis of the conductivity-tensor components, magnetoresistance, and Hall coefficient in n-type Al0.85Ga0.15N/GaN in magnetic fields up to 12 T, in the temperature range from 2 to 295 K. The mixed conduction is due to high-mobility carriers in the conduction band in the interface and to low-mobility carriers in the conduction band in the GaN layer and in an impurity band. The corrections to the conduction of high-mobility carriers result from quantum effects: negative magnetoresistance, extraordinary Hall effect, and freeze-out of electrons. Negative magnetoresistance is due to localisation of electrons and to increasing tunnel coupling between electron states in different minima of a random potential, due to interface roughness. The extraordinary Hall effect has been explained by interaction of electrons with magnetic moments of dislocations in the interface. Decreasing concentration of electrons is probably due to Landau quantisation of the conduction band in the interface of the heterostructure. Received: 27 November 2000 / Accepted: 18 December 2000 / Published online: 3 April 2001  相似文献   

14.
In0.82Ga0.18As epilayers were grown on InP substrates using a two-step growth technique by LP-MOCVD. A homogeneous low-temperature (450 °C) In0.82Ga0.18As buffer layer was introduced to improve the crystalline quality of epilayers. The influence of low-temperature buffer layer deposition condition, such as thermal annealing duration, on the crystalline quality of the In0.82Ga0.18As epilayer was investigated. Double-crystal X-ray diffraction measurement, Hall measurement, and Raman scattering spectrum were used to evaluate the In0.82Ga0.18As epilayers. Atomic force microscope was used to study the surface morphology. It is found that the In0.82Ga0.18As epilayer, with buffer layer thermal annealing for 5 min, exhibits the best crystalline quality. The change of the surface morphology of the buffer layer after thermal annealing treatment was suggested to explain the phenomenon.  相似文献   

15.
We report on the reliability of Inx Al1–xN/AlN/GaN‐based heterostructure field‐effect transistors (HFETs) fabricated on five different wafers with varying indium compositions (0.12 ≤ x ≤ 0.20) encompassing the tensile/compressive strain fields. All of the tested devices underwent high field on‐state stress at 20 V DC drain bias and zero gate bias for five hours. We monitored the drain current and low‐frequency noise (LFN) a priori and a posteriori the stress treatment to quantify device degradation. HFETs suffering tensile strain showed remarkably large degradation which manifested itself with up to 25 dB increase in noise power and up to 72% loss of drain current after stress. On the other hand, devices fabricated on compressively strained structures remained intact after stress, but they had about 30 dB higher pre‐stress noise‐power levels and about 50% lower drain‐current densities to begin with. The results show that the nearly lattice‐matched In0.17Al0.83N barrier exhibited very low degradation along with current density remaining high compared with the devices having barriers with lower or higher indium content. Our results suggest that the nearly‐lattice‐matched InAlN can be a good candidate for devices due to its relatively better reliability while maintaining a high current density. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
高电子迁移率晶格匹配InAlN/GaN材料研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张金风  王平亚  薛军帅  周勇波  张进成  郝跃 《物理学报》2011,60(11):117305-117305
文章基于蓝宝石衬底采用脉冲金属有机物化学气相淀积(MOCVD)法生长的高迁移率InAlN/GaN材料,其霍尔迁移率在室温和77 K下分别达到949和2032 cm2/Vs,材料中形成了二维电子气(2DEG). 进一步引入1.2 nm的AlN界面插入层形成InAlN/AlN/GaN结构,则霍尔迁移率在室温和77 K下分别上升到1437和5308 cm2/Vs. 分析样品的X射线衍射、原子力显微镜测试结果以及脉冲MOCVD生长方法的特点,发现InAlN/GaN材料的结晶质量较高,与GaN晶格匹配的InAlN材料具有平滑的表面和界面. InAlN/GaN和InAlN/AlN/GaN材料形成高迁移率特性的主要原因归结为形成了密度相对较低(1.6×1013-1.8×1013 cm-2)的2DEG,高质量的InAlN晶体降低了组分不均匀分布引起的合金无序散射,以及2DEG所在界面的粗糙度较小,削弱了界面粗糙度散射. 关键词: InAlN/GaN 脉冲金属有机物化学气相淀积 二维电子气 迁移率  相似文献   

17.
Nitride heterojunction field effect transistors (HFETs) with quaternary AlInGaN barrier layers have achieved remarkable successes in recent years based on highly improved mobility of the two-dimensional electron gases (2DEGs) and greatly changed AlInGaN compositions. To investigate the influence of the AlInGaN composition on the 2DEG mobility, the quaternary alloy disorder (ADO) scattering to 2DEGs in AlInGaN/GaN heterojunctions is modeled using virtual crystal approximation. The calculated mobility as a function of AlInGaN alloy composition is shown to be a triangular-scarf-like curved surface for both cases of fixed thickness of AlInGaN layer and fixed 2DEG density. Though the two mobility surfaces are quite different in shape, both of them manifest the smooth transition of the strength of ADO scattering from quaternary AlInGaN to ternary AlGaN or AlInN. Some useful principles to estimate the mobility change with the Al(In,Ga)N composition in Al(In,Ga)N/GaN heterojunctions with a fixed 2DEG density are given. The comparison between some highest Hall mobility data reported for AlxGa1−xN/GaN heterojunctions (x=0.06~0.2) at very low temperature (0.3~13 K) and the calculated 2DEG mobility considering ADO scattering and interface roughness scattering verifies the influence of ADO scattering. Moreover, the room temperature Hall mobility data of Al(In,Ga)N/AlN/GaN heterojunctions with ADO scattering eliminated are summarized from literatures. The data show continuous dependence on Hall electron density but independence of the Al(In,Ga)N composition, which also supports our theoretical results. The feasibility of quaternary AlInGaN barrier layer in high conductivity nitride HFET structures is demonstrated.  相似文献   

18.
林芳  沈波  卢励吾  马楠  许福军  苗振林  宋杰  刘新宇  魏珂  黄俊 《中国物理 B》2010,19(12):127304-127304
In contrast with Au/Ni/Al 0.25 Ga 0.75 N/GaN Schottky contacts,this paper systematically investigates the effect of thermal annealing of Au/Pt/Al 0.25 Ga 0.75 N/GaN structures on electrical properties of the two-dimensional electron gas in Al 0.25 Ga 0.75 N/GaN heterostructures by means of temperature-dependent Hall and temperature-dependent current-voltage measurements.The two-dimensional electron gas density of the samples with Pt cap layer increases after annealing in N 2 ambience at 600℃ while the annealing treatment has little effect on the two-dimensional electron gas mobility in comparison with the samples with Ni cap layer.The experimental results indicate that the Au/Pt/Al 0.25 Ga 0.75 N/GaN Schottky contacts reduce the reverse leakage current density at high annealing temperatures of 400-600℃.As a conclusion,the better thermal stability of the Au/Pt/Al 0.25 Ga 0.75 N/GaN Schottky contacts than the Au/Ni/Al 0.25 Ga 0.75 N/GaN Schottky contacts at high temperatures can be attributed to the inertness of the interface between Pt and AlxGa1-xN.  相似文献   

19.
Influence of interface traps at Al2O3/(GaN)/AlGaN interface on low and high frequency capacitance of Al2O3/(GaN)/AlGaN/GaN heterostructure capacitor was studied. New features were observed in the capacitance curves. Obtained experimental results were modeled and simulated and accordance with the experiment has been obtained. For lower frequencies a new capacitance peak in the depletion and increase of the capacitance in a plateau region were measured. The capacitance peak in the depletion region was successfully explained by a capacitance response of the interface traps with U-shape density distribution. On the other hand the increase of the capacitance plateau was modeled by the homogeneous interface trap distribution. We assume that the traps located near the band edges having the highest density are able to respond to the low frequency measuring.  相似文献   

20.
Electrical characteristics of In0.05 Ga0.95N/Al0.07Ga0.9aN and In0.05 Ga0.95N/GaN multiple quantum well (MQW) ultraviolet light-emltting diodes (UV-LEDs) at 400hm wavelength are measured. It is found that for InGaN/AlGaN MQW LEDs, both ideality factor and parallel resistance are similar to those of InGaN/GaN MQW LEDs, while series resistance is two times larger. It is suggested that the Al0.07Ga0.93N barrier layer did not change crystal quality and electrical characteristic of p-n junction either, but brought larger series resistance. As a result, InGaN/AlGaN MQW LEDs suffer more serious thermal dissipation problem although they show higher light output efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号