首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
《Current Applied Physics》2020,20(12):1351-1358
It is well known that carrier distribution in InGaN multiple quantum wells (MQWs) can be significantly inhomogeneous. However, the conventional ABC recombination model assumes that carriers are uniformly distributed throughout the MQW. In this paper, a modified ABC model that considers the unequal carrier density in the QWs was developed. From the analysis of the developed ABC model, the effective recombination coefficients and modified internal quantum efficiency (IQE) were obtained for an arbitrary carrier distribution in MQWs. The efficiency droop was found to be aggravated as the carrier distribution was increasingly inhomogeneous. However, it was also found that the effect of inhomogeneous carrier distribution alone was not sufficient to explain the IQE droop with the theoretical Auger recombination coefficient based on indirect Auger processes. The developed ABC model is expected to provide insight into the influence of inhomogeneous carrier distributions in MQWs on the efficiency droop in GaN-based light-emitting diodes.  相似文献   

2.
Auger induced leakage is shown to be a contributing factor for the internal quantum efficiency (IQE) droop in III‐nitride quantum‐well light emitting diodes (LEDs). The mechanism is based on leakage current from carrier spill‐out of the well originating from energy transfer during Auger recombination. Adding this leakage reduces the Auger coefficient by 50% when compared to a standard Auger model with cubic density dependence. As reference, experimental data of a green quantum‐well LED are taken. Direct leakage due to non‐ideal carrier capture and re‐emission out of the well affects the IQE at current densities much larger than the maximum IQE point. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Gallium nitride(Ga N) based light-emitting diodes(LEDs) with chirped multiple quantum well(MQW) structures have been investigated experimentally and numerically in this paper. Compared to conventional LEDs with uniform quantum wells(QWs), LEDs with chirped MQW structures have better internal quantum efficiency(IQE) and carrier injection efficiency. The droop ratios of LEDs with chirped MQW structures show a remarkable improvement at 600 m A/mm2,reduced down from 28.6%(conventional uniform LEDs) to 23.7%(chirped MQWs-a) and 18.6%(chirped MQWs-b),respectively. Meanwhile, the peak IQE increases from 76.9%(uniform LEDs) to 83.7%(chirped MQWs-a) and 88.6%(chirped MQWs-b). The reservoir effect of chirped MQW structures is the significant reason as it could increase hole injection efficiency and radiative recombination. The leakage current and Auger recombination of chirped MQW structures can also be suppressed. Furthermore, the chirped MQWs-b structure with lower potential barriers can enhance the reservoir effect and obtain further improvement of the carrier injection efficiency and radiative recombination, as well as further suppressing efficiency droop.  相似文献   

4.
The efficiency droop of InGaN-based blue light-emitting diodes (LEDs) is analyzed using numerical simulations with a modified ABC carrier recombination model. The ABC model is modified to include the effect of reduced effective active volume of InGaN quantum wells (QWs) and incorporated into the numerical simulation program. It is found that the droop of internal quantum efficiency (IQE) can be well explained by the effect of reduced light-emitting active volume without assuming a large Auger recombination coefficient. A simulated IQE curve with the modified ABC model is found to fit quite well with a measured efficiency curve of an InGaN LED sample when the effective active volume takes only 2.5% of the physical volume of QWs. The proposed numerical simulation model incorporating the reduced effective active volume can be advantageous for use in the modeling and simulation of InGaN LEDs for higher efficiency.  相似文献   

5.
Nitride-based light-emitting diodes suffer from a reduction (droop) of the internal quantum efficiency (IQE) with increasing injection current. Using advanced device simulation, we investigate the impact of electron leakage on the IQE droop for different properties of the electron blocker layer (EBL). The simulations show a strong influence of the EBL acceptor density on the droop. We also find that the electron leakage decreases with increasing temperature, which contradicts common assumptions.  相似文献   

6.
宋晶晶  张运炎  赵芳  郑树文  范广涵 《发光学报》2012,33(12):1368-1372
采用软件理论分析的方法分析了InGaN/AlGaN量子阱数量变化对发光二极管内量子效率、电子空穴浓度分布、载流子溢出产生的影响。分析结果表明:量子阱的个数不是越多越好,LED的光学性质和量子阱的个数并不成线性关系。量子阱个数太少时,电流溢出现象较明显;而当量子阱个数太多时,极化现象明显,且会造成材料浪费。因此应根据工作电流选择合适的量子阱个数。  相似文献   

7.
张运炎  范广涵 《中国物理 B》2011,20(4):48502-048502
The advantages of nitride-based dual-wavelength light-emitting diodes (LEDs) with an InAlN electron blocking layer (EBL) are studied. The emission spectra,carrier concentration in the quantum wells (QWs),energy band and internal quantum efficiency (IQE) are investigated. The simulation results indicate that an LED with an InAlN EBL performs better over a conventional LED with an AlGaN EBL and an LED with p-type-doped QW barriers. All of the advantages are due to the enhancement of carrier confinement and the lower electron leakage current. The simulation results also show that the efficiency droop is markedly improved and the luminous intensity is greatly enhanced when an InAlN EBL is used.  相似文献   

8.
Designs of p-doped in quantum well (QW) barriers and specific number of vertically stacked QWs areproposed to improve the optical performance of GaN-based dual-wavelength light-emitting diodes (LEDs).Emission spectra, carrier concentration, electron current density, and internal quantum efficiency (IQE)are studied numerically. Simulation results show that the efficiency droop and the spectrum intensityat the large current injection are improved markedly by using the proposed design. Compared with the conventional LEDs, the uniform spectrum intensity of dual-wavelength luminescence is realized when aspecific number of vertically stacked QWs is adopted. Suppression of electron leakage current and the promotion of hole injection efficiency could be one of the main reasons for these improvements.  相似文献   

9.
分别对3种不种电子阻挡层的蓝光AlGaN LED进行数值模拟研究。3种阻挡层结构分别为传统AlGaN电子阻挡层,AlGaN-GaN-AlGaN电子阻挡层和Al组分渐变的AlGaN-GaN-AlGaN电子阻挡层。此外对这对三种器件的活性区的载流子浓度、能带图、静电场和内量子效率进行比较和分析。研究结果表明,相较于传统AlGaN和AlGaN-GaN-AlGaN两种电子阻挡层的LED,具有Al组分渐变的AlGaN-GaN-AlGaN电子阻挡层结构的LED具有较高的空穴注入效率、较低的电子外溢现象和较小的静电场(活性区)。同时,具有Al组分渐变的AlGaN-GaN-AlGaN电子阻挡层结构的LED的efficiency droop现象也得到一定的缓解。  相似文献   

10.
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-AlGaN hole blocking layer (HBL), and an n-AlGaN HBL with gradual Al composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AlGaN HBL with gradual Al composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conventional p-AlGaN EBL or a common n-AlGaN HBL. Meanwhile, the efficiency droop is alleviated when an n-AlGaN HBL with gradual Al composition is used.  相似文献   

11.
The optical and physical properties of an InGaN light-emitting diode (LED) with a specific design of a staggered AlGaN electron-blocking layer (EBL) are investigated numerically in detail. The electrostatic field distribution, energy band, carrier concentration, electroluminescence (EL) intensity, internal quantum efficiency (IQE), and the output power are simulated. The results reveal that this specific design has a remarkable improvement in optical performance compared with the design of a conventional LED. The lower electron leakage current, higher hole injection efficiency, and consequently mitigated efficiency droop are achieved. The significant decrease of electrostatic field at the interface between the last barrier and the EBL of the LED could be one of the main reasons for these improvements.  相似文献   

12.
陈峻  范广涵  张运炎 《中国物理 B》2013,22(1):18504-018504
The optical and physical properties of InGaN light-emitting diode (LED) with a specific design of staggered AlGaN electron-blocking layer (EBL) are investigated numerically in detail. The electrostatic field distribution, energy band, carrier concentration, electroluminescence (EL) intensity, internal quantum efficiency (IQE), and the output power are simulated. The results reveal that this specific design has a remarkable improvement of optical performance compared with the design of conventional LED. The lower electron leakage current, higher hole injection efficiency, and consequently mitigated efficiency droop are achieved. The significant decrease of electrostatic field at the interface between the last barrier and the EBL of LED could be one of the main reasons for these improvements.  相似文献   

13.
Current diffusion is an old issue, nevertheless, the relationship between the current diffusion and the efficiency of light emitting diodes(LEDs) needs to be further quantitatively clarified. By incorporating current crowding effect(CCE) into the conventional ABC model, we have theoretically and directly correlated the current diffusion and the internal quantum efficiency(IQE), light extraction efficiency(LEE), and external quantum efficiency(EQE) droop of the lateral LEDs.However, questions still exist for the vertical LEDs(V-LEDs). Here firstly the current diffusion length L_s(I) and L_s(II) have been clarified. Based on this, the influence of CCE on the EQE, IQE, and LEE of V-LEDs were investigated. Specifically to our V-LEDs with moderate series resistivity, L_s(III) was developed by combining L_s(I) and L_s(II), and the CCE effect on the performance of V-LEDs was investigated. The wall-plug efficiency(WPE) of V-LEDs ware investigated finally. Our works provide a deep understanding of the current diffusion status and the correlated efficiency droop in V-LEDs, thus would benefit the V-LEDs' chip design and further efficiency improvement.  相似文献   

14.
We present a convenient and reliable method for determining the internal quantum efficiency (IQE) in GaN-based blue light-emitting diodes (LEDs) grown on Si(111) substrates based on the carrier rate equation model. By using the peak point of the efficiency curve in photoluminescence (PL) measurements as the parameter of the rate equation analysis, the IQE can be unambiguously determined without any pre-assumed parameters. The theoretical IQE model is used to fit the measured PL efficiency curves and the IQE of LED samples are determined. The maximum IQE of the LED sample grown on the Si substrate was obtained to be 0.74, which is found to agree well with the results obtained by conventional temperature-dependent PL measurements.  相似文献   

15.
对InGaN量子阱LED的内量子效率进行了优化研究。分别对发光光谱、量子阱中的载流子浓度、能带分布、静电场和内量子效应进行了理论分析。对具有不同量子阱数量的InGaN/GaN LED进行了理论数值比对研究。研究结果表明,对于传统结构的LED而言,2个量子阱的结构相对于5个和7个量子阱具有更好的光学性能。同时还研究了具有三角形量子阱结构的LED,研究结果显示,三角形多量子阱结构具有较高的电致发光强度、更高的内量子效率和更好的发光效率,所有的优点都归因于较高的电子-空穴波函数重叠率和低的Stark效应所产生的较高的载流子输入效率和复合发光效率。  相似文献   

16.
The effects of InGaN light-emitting diodes (LEDs) with InGaN and composition-graded InGaN interlayers in the space of multiple quantum wells and electron blocking layer are studied numerically. The electrostatic field, energy band diagrams, carrier concentrations, light–current–voltage performances, and internal quantum efficiency (IQE) are investigated. Simulation results show that the light output power and IQE are both largely improved over the conventional LED structure due to the improvement in hole injection efficiency and electron blocking capability, especially for the LED with composition-graded InGaN interlayer.  相似文献   

17.
The optical properties of AlGaN-based quantum well(QW) structure with two coupled thin well layers are investigated by the six-by-six K-P method.Compared with the conventional structure,the new structure,especially the one with lower Al-content in the barrier layer,can enhance the TE-/TM-polarized total spontaneous emission rate due to the strong quantum confinement and wide recombination region.For the conventional QW structure,the reduction of well thickness can lead the degree of polarization(DOP) to decrease and the internal quantum efficiency(IQE) to increase.By using the coupled thin well layers,the DOP for the structure with high Al-content in the barrier layer can be improved,while the DOP will further decrease with low Al-content in the barrier layer.It can be attributed to the band adjustment induced by the combination of barrier height and well layer coupling.The IQE can also be further enhanced to 14.8%-20.5% for various Al-content of barrier layer at J=100 A/cm~2.In addition,the efficiency droop effect can be expected to be suppressed compared with the conventional structure.  相似文献   

18.
In this study,the efficiency droop of an InGaN light-emitting diode(LED)is reduced significantly by using a pAlGaN/GaN superlattice last quantum barrier.The reduction in efficiency droop is mainly caused by the decrease of electron current leakage and the increase of hole injection efficiency,which is revealed by investigating the light currents,internal quantum efficiencies,energy band diagrams,carrier concentrations,carrier current densities,and radiative recombination efficiencies of three LED structures with the advanced physical model of semiconductor device(APSYS).  相似文献   

19.
刘木林  闵秋应  叶志清 《物理学报》2012,61(17):178503-178503
InGaN/GaN基阱垒结构LED当注入的电流密度较大时, LED的量子效率随注入电流密度增大而下降, 即droop效应.本文在Si (111)衬底上生长了 InGaN/GaN 基蓝光多量子阱结构的LED,通过将实验测量的光电性能曲线与利用ABC模型模拟的结果进行对比, 探讨了droop效应的成因.结果显示:温度下降会阻碍电流扩展和降低空穴浓度, 电子在阱中分布会越来越不平衡,阱中局部区域中因填充了势能越来越高的电子而溢出阱外, 从而使droop效应随着温度的降低在更小的电流密度下出现且更为严重, 不同温度下实验值与俄歇复合模型模拟的结果在高注入时趋势相反.这此结果表明,引起 droop效应的主因不是俄歇非辐射复合而是电子溢出,电子溢出的本质原因是载流子在阱中分布不均衡.  相似文献   

20.
以太阳电池级直拉单晶硅片为材料,利用瞬态微波反射光电导衰减仪研究了硅片分别经过单、双面扩散后Fe-B对与少子寿命τ、陷阱浓度及制备成电池的内量子效率(IQE)的相关性.对于单面扩散后的样品,Fe-B对浓度分布在较大程度上决定了少子寿命分布;对于双面扩散后的样品,Fe-B对浓度显著降低(在135×1011 cm-3左右),已不及其他杂质和缺陷对少子寿命的影响.结合瞬态微波衰减信号和陷阱模型,对单、双面吸杂前后硅片的陷阱浓度进行数值计算,发现经过扩散 关键词: 少子寿命 陷阱浓度 内量子效率 Fe-B对  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号