共查询到20条相似文献,搜索用时 15 毫秒
1.
Mohammad Foad Abazari Navid Nasiri Fatemeh Nejati Mina Kohandani Nazanin Hajati‐Birgani Solmaz Sadeghi Peyman Piri Fatemeh Soleimanifar Mostafa Rezaei‐Tavirani Vahid Mansouri 《先进技术聚合物》2021,32(1):272-281
After about three decades of experience, tissue engineering has become one of the most important approaches in reconstructive medical research to treat non‐self‐healing bone injuries and lesions. Herein, nanofibrous composite scaffolds fabricated by electrospinning, which containing of poly(L‐lactic acid) (PLLA), graphene oxide (GO), and bone morphogenetic protein 2 (BMP2) for bone tissue engineering applications. After structural evaluations, adipose tissue derived mesenchymal stem cells (AT‐MSCs) were applied to monitor scaffold's biological behavior and osteoinductivity properties. All fabricated scaffolds had nanofibrous structure with interconnected pores, bead free, and well mechanical properties. But the best biological behavior including cell attachment, protein adsorption, and support cells proliferation was detected by PLLA‐GO‐BMP2 nanofibrous scaffold compared to the PLLA and PLLA‐GO. Moreover, detected ALP activity, calcium content and expression level of bone‐related gene markers in AT‐MSCs grown on PLLA‐GO‐BMP2 nanofibrous scaffold was also significantly promoted in compression with the cells grown on other scaffolds. In fact, the simultaneous presence of two factors, GO and BMP2, in the PLLA nanofibrous scaffold structure has a synergistic effect and therefore has a promising potential for tissue engineering applications in the repair of bone lesions. 相似文献
2.
Venkatraman Senthil Kumar Choudhary Rajan Genasan Krishnamurithy Murali Malliga Raman Raghavendran Hanumantha Rao Balaji Kamarul Tunku Suresh Anushree Abraham Jayanthi Venkateswaran Seshasailam Livingston Abel Swamiappan Sasikumar 《Journal of Sol-Gel Science and Technology》2021,100(3):506-516
Journal of Sol-Gel Science and Technology - Biocompatibility and bacterial infections are the primary concerns associated with the current bone graft substitutes. The application of... 相似文献
3.
Poly(L ‐lactic acid)/poly(D ‐lactic acid) (PLLA/PDLA) blended with plasticizer poly(ethylene glycol) and nucleation agent TMC‐306 as‐spun fibers were prepared by melt spinning. The posttreatment was applied by hot drawing at 70°C and then heat‐treating at different temperatures for 30 minutes. In the process of hot drawing, orientation induced the further formation of the sc crystals and increased the degree of crystallinity of drawn fibers. When the hot drawing ratio reached 3 times, the properties of the fibers were relatively better. The highly oriented fibers containing pure sc crystals with high crystallinity were obtained by heat‐treating at a temperature above the melting point of α crystals. The posttreated PLLA/PDLA fibers with poly(ethylene glycol) and TMC‐306 (LDTP) obtained by hot drawing to 3 times at 70°C and then annealing at 170°C for 30 minutes exhibited the best antioxidative degradation and heat resistance properties. The initial decomposition temperature (T5%) and heat resistance of posttreated LDTP fiber were about 94°C and 20°C higher than those of the commercial PLLA fiber, respectively. 相似文献
4.
5.
6.
Preparation of HMWCNT/PLLA nanocomposite scaffolds for application in nerve tissue engineering and evaluation of their physical,mechanical and cellular activity properties 下载免费PDF全文
This study was aimed to prepare biodegradable and porous nanocomposite scaffolds with microtubular orientation structure as a model for nerve tissue engineering by thermally induced phase separation (TIPS) method using dioxane as the solvent, crystalline poly (L‐lactic acid) (PLLA) and multi‐walled carbon nanotubes (MWCNTs). In order to overcome dispersion of MWCNTs in the PLLA matrix, heparinization of MWCNTs was performed. Solvent crystallization, oriented structure, the mean pore diameter and porosity percentage of the scaffolds were controlled by fundamental system parameters including temperature‐gradient of the system, polymer solution concentration and carbon nanotube content. Scanning Electron Microscopy (SEM), ImageJ, software and dynamic mechanical thermal analysis (DMTA) were used to investigate the structural and mechanical properties. TEM observation was carried out for characterization of nanotube dispersion in PLLA. It was found that the scaffolds containing heparinized multi‐walled carbon nanotubes (HMWCNTs) exhibited higher storage modulus, better carbon nanotube (CNT) dispersion and tubular orientation structure than those with non heparinized MWCNTs. In‐vitro studies were also conducted by using murine P19 cell line as a suitable model system to analyze neuronal differentiation over a 2‐week period. Immunofluorescence and DAPI staining were used to confirm the cells' attachment and differentiation on the PLLA/HMWCNT nanocomposite scaffolds. Based on the results, we can conclude that the PLLA/HMWCNT scaffolds enhanced the nerve cell differentiation and proliferation, and therefore, acted as a positive cue to support neurite outgrowth. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
7.
Mohammad Foad Abazari Shohreh Zare Karizi Mina Kohandani Navid Nasiri Fatemeh Nejati Ehsan Saburi Amin Reza Nikpoor Seyed Ehsan Enderami Fatemeh Soleimanifar Vahid Mansouri 《先进技术聚合物》2020,31(10):2259-2269
Tissue engineering using new strategies has become a growing and promising method for treating large tissue lesions in the body. On the other hand, microRNAs (miRNAs), which are small non‐coding regulatory RNAs, are a new class of genetic materials that can have effective pharmacological roles. The combination of these two themes has created promising prospects for the treatment of diseases. Herein, human induced pluripotent stem cells (iPSCs) were transduced with miRNA‐2861 and then the osteogenic differentiation potential of transduced iPSCs and non‐transduced iPSCs was investigated while cultured on the electrospun poly lactic‐co‐glycolic acid (PLGA) nanofibrous scaffold and culture plate. MiR‐2861‐transduced iPSCs showed a significantly higher viability, mineralization, alkaline phosphatase (ALP) activity, calcium content, and bone‐related gene expression in comparison with those iPSCs that non‐transduced. The results also indicated that this increase is improved when miR‐2861 transduced iPSCs are cultured on the PLGA nanofibrous scaffold synergistically. This synergy was also confirmed by the results obtained from of Western blot analysis. It can be concluded that, miR‐2861, by negative regulation of those proteins that decrease/inhibit osteogenic differentiation and PLGA nanofibrous scaffold by preparation of a suitable artificial extracellular matrix, have a great positive impact in improving iPSCs osteogenic differentiation potential and this blend can be proposed to use in bone tissue engineering application. 相似文献
8.
Da Sol Kim Sun Young Lee Jung Hee Lee Yong Chan Bae Jin Sup Jung 《Experimental & molecular medicine》2015,47(7):e172
The elucidation of the molecular mechanisms underlying the differentiation and proliferation of human adipose tissue-derived stromal cells (hADSCs) represents a critical step in the development of hADSCs-based cellular therapies. To examine the role of the microRNA-103a-3p (miR-103a-3p) in hADSCs functions, miR-103a-3p mimics were transfected into hADSCs in order to overexpress miR-103a-3p. Osteogenic differentiation was induced for 14 days in an osetogenic differentiation medium and assessed by using an Alizarin Red S stain. The regulation of the expression of CDK6 (cyclin-dependent kinase 6), a predicted target of miR-103a-3p, was determined by western blot, real-time PCR and luciferase reporter assays. Overexpression of miR-103a-3p inhibited the proliferation and osteogenic differentiation of hADSCs. In addition, it downregulated protein and mRNA levels of predicted target of miR-103a-3p (CDK6 and DICER1). In contrast, inhibition of miR-103a-3p with 2′O methyl antisense RNA increased the proliferation and osteogenic differentiation of hADSCs. The luciferase reporter activity of the construct containing the miR-103a-3p target site within the CDK6 and DICER1 3′-untranslated regions was lower in miR-103a-3p-transfected hADSCs than in control miRNA-transfected hADSCs. RNA interference-mediated downregulation of CDK6 and DICER1 in hADSCs inhibited their proliferation and osteogenic differentiation. The results of the current study indicate that miR-103a-3p regulates the osteogenic differentiation of hADSCs and proliferation of hADSCs by direct targeting of CDK6 and DICER1 partly. These findings further elucidate the molecular mechanisms governing the differentiation and proliferation of hADSCs. 相似文献
9.
Fan JJ Cao LG Wu T Wang DX Jin D Jiang S Zhang ZY Bi L Pei GX 《Molecules (Basel, Switzerland)》2011,16(12):10123-10133
Icariin had been reported as a potential agent for osteogenesis, but the dose-effect relationship needed further research to realize the clinical application of icariin. We isolated and purified human bone mesenchymal stem cells (hBMSCs) and stimulated them with different concentrations of icariin. The cytotoxicity of icariin was evaluated by the methylthiazolytetrazolium (MTT) assay method. The proliferation and osteogenic differentiation of such hBMSCs were investigated for different concentrations of icariin. We found that icariin had a dose-dependent effect on the proliferation and osteogenic differentiation of hBMSCs in a suitable concentration range from 10(-9) M to 10(-6) M, but at concentrations above 10(-5) M, the cytotoxicity limited its use. The extremely low cost of icariin and its high abundance make it appealing for bone regeneration. 相似文献
10.
Thromboxane A2 modulates migration, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells 总被引:1,自引:0,他引:1
Doo Hee Yun Hae Young Song Mi Jeong Lee Mi Ra Kim Min Young Kim Jung Sub Lee Jae Ho Kim 《Experimental & molecular medicine》2009,41(1):17-24
Prostanoid metabolites are key mediators in inflammatory responses, and accumulating evidence suggests that mesenchymal stem cells (MSCs) can be recruited to injured or inflamed tissues. In the present study, we investigated whether prostanoid metabolites can regulate migration, proliferation, and differentiation potentials of MSCs. We demonstrated herein that the stable thromboxane A2 (TxA2) mimetic U46619 strongly stimulated migration and proliferation of human adipose tissue-derived MSCs (hADSCs). Furthermore, U46619 treatment increased expression of α-smooth muscle actin (α-SMA), a smooth muscle marker, in hADSCs, suggesting differentiation of hADSCs into smooth muscle-like cells. U46619 activated ERK and p38 MAPK, and pretreatment of the cells with the MEK inhibitor U0126 or the p38 MAPK inhibitor SB202190 abrogated the U46619-induced migration, proliferation, and α-SMA expression. These results suggest that TxA2 plays a key role in the migration, proliferation, and differentiation of hADSCs into smooth muscle-like cells through signaling mechanisms involving ERK and p38 MAPK. 相似文献
11.
Antonio Casado-D��az Raquel Santiago-Mora Jos�� Manuel Quesada 《Experimental & molecular medicine》2010,42(2):87-98
Parathyroid hormone-related protein (PTHrP) is synthesized by diverse tissues, and its processing produces several fragments, each with apparently distinct autocrine and paracrine bioactivities. In bone, PTHrP appears to modulate bone formation in part through promoting osteoblast differentiation. The putative effect of PTH-like and PTH-unrelated fragments of PTHrP on human mesenchymal stem cell (MSCs) is not well known. Human MSCs were treated with PTHrP (1-36) or PTHrP (107-139) or both (each at 10 nM) in osteogenic or adipogenic medium, from the start or after 6 days of exposure to the corresponding medium, and the expression of several osteoblastogenic and adipogenic markers was analyzed. PTHrP (1-36) inhibited adipogenesis in MSCs and favoured the expression of osteogenic early markers. The opposite was observed with treatment of MSCs with PTHrP (107-139). Moreover, inhibition of the adipogenic differentiation by PTHrP (1-36) prevailed in the presence of PTHrP (107-139). The PTH/PTHrP type 1 receptor (PTH1R) gene expression was maximum in the earlier and later stages of osteogenesis and adipogenesis, respectively. While PTHrP (107-139) did not modify the PTH1R overexpression during adipogenesis, PTHrP (1-36) did inhibit it; an effect which was partially affected by PTHrP (7-34), a PTH1R antagonist, at 1 µM. These findings demonstrate that both PTHrP domains can exert varying effects on human MSCs differentiation. PTHrP (107-139) showed a tendency to favor adipogenesis, while PTHrP (1-36) induced a mild osteogenic effect in these cells, and inhibited their adipocytic commitment. This further supports the potential anabolic action of the latter peptide in humans. 相似文献
12.
Although recently a growing number of reports demonstrate that topography or geometry of the substrate also plays an important role in the fate of the stem cells, most of these studies are usually completed by a few distinct patterns such as simple lines, posts, etc. As a result, there is a lack of quantitative analysis of the relationship between topographical variation and the differentiation of stem cells. Here, the effectiveness of topography variation is studied systematically in several microengineered substrates on osteogenic differentiation. It is found that the effectiveness of the osteogenic differentiation has a peak around 3 μm in the interval length of micropatterns. 相似文献
13.
14.
明胶/聚乳酸复合纤维膜的制备、表征及作为角膜细胞载体的评价 总被引:1,自引:0,他引:1
利用静电纺丝技术制备了明胶与聚乳酸的复合纤维膜, 研究了组分配比对复合膜的表面性能、孔隙结构和力学性能的影响, 并以复合膜为组织工程支架进行兔角膜上皮细胞的体外培养. 采用扫描电子显微镜、免疫荧光染色和噻唑蓝四氮唑溴化物(MTT)比色法综合评价了细胞在支架表面的黏附与增殖能力. 结果表明, 纺丝溶液的组分对纤维的直径分布和表面亲水性有显著影响, 不同组分配比的复合纤维膜均具有高孔隙率的通孔结构; 以明胶为基材可维持复合膜的细胞黏附性; 与聚乳酸复合可以明显提高复合膜的力学性能. 相似文献
15.
Preparation and biodegradation of electrospun PLLA/keratin nonwoven fibrous membrane 总被引:1,自引:0,他引:1
As a kind of natural protein, wool keratin was used to improve the cell affinity of poly(l-lactic acid) (PLLA). After small keratin particles were prepared from keratin solution by spray-drying process, they were blended with PLLA solution. PLLA/keratin nonwoven fibrous membrane was produced by electrospinning the blend solutions. The release rate of keratin from the composite membrane was detected by Fourier transform infrared (FTIR) after PLLA/keratin membranes were degraded in PBS up to 4 weeks. The chemical compositions of the PLLA/keratin surface were examined by X-ray photoelectron spectroscope. Although more than half of the keratin was removed from PLLA/keratin membrane during the first few hours of degradation, some keratin particles were still embedded in the PLLA fibers. Osteoblast cells were used to evaluate the cellular behaviors of the composite membrane. After 7 days culturing, more cells were observed on PLLA/keratin membranes than on pure PLLA membranes. MTT assay and alkaline phosphatase (ALP) activity results suggested that keratin could improve the interactions between osteoblast cells and the polymeric membranes. 相似文献
16.
Junxing Li Aihua He Charles C. Han Dufei Fang Benjamin S. Hsiao Benjamin Chu 《Macromolecular rapid communications》2006,27(2):114-120
Summary: In the present study, electrospinning of hyaluronic acid (HA) and hyaluronic acid/gelatin (HA‐GE) blends in N,N‐dimethylformamide (DMF)/water‐mixed solvents have been investigated. When the volume ratio of DMF to water was in the range of 1.5–0.5, HA solutions could be electrospun into fibrous membranes successfully. The average diameter of HA fibers was about 200 nm. The HA‐GE composite nanofibrous membranes with varied HA/GE weight ratio in the range of 100/20–100/100 have also been successfully fabricated. The average diameter of HA‐GE fibers was in the range of 190–500 nm. The decrease in surface tension could promote fiber formation. Thus, an introduction of DMF that could decrease the surface tension distinctively, without significant change or increase in viscosity of the solution, could bypass the use of blowing‐assisted electrospinning. Our postulated picture is that the lower surface tension could help the ejection of stream with relatively high viscosity and reduce or prevent the droplet formation during the spinning process.
17.
Ozgun Can Onder Emel Yilgor Iskender Yilgor 《Journal of Polymer Science.Polymer Physics》2019,57(2):98-108
Monolithic poly(lactic acid) (PLA) foams were produced by thermally induced phase separation. PLA solutions with concentrations 8–22 wt % were prepared in tetrahydrofuran/methanol (THF/MeOH) solvent/nonsolvent mixtures at 55 °C. Homogenous solutions were quenched at ?20 °C to induce phase separation and gelation. Resulting gels were mechanically stabilized by solvent exchange. Subsequent supercritical CO2 drying yielded monolithic PLA foams. Crystal structure and degree of crystallinity of the foams were obtained by x‐ray diffractometry and differential scanning calorimetry. Morphologies were determined by scanning electron microscopy. Tuning the PLA concentration and THF/MeOH ratio enabled preparation of monolithic PLA foams. Depending on the experimental conditions various morphologies, such as: interconnected networks, thin platelets, lamellar stacks, axialites, and spherulites were formed. Monoliths obtained were highly crystalline. By changing the PLA concentration monoliths with controlled average pore sizes (170–1440 nm) and porosities (80–90%) were produced. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 98–108 相似文献
18.
Mackle JN Blond DJ Mooney E McDonnell C Blau WJ Shaw G Barry FP Murphy JM Barron V 《Macromolecular bioscience》2011,11(9):1272-1282
In an effort to reduce organ replacement and enhance tissue repair, there has been a tremendous effort to create biomechanically optimized scaffolds for tissue engineering applications. In contrast, the development and characterization of electroactive scaffolds has attracted little attention. Consequently, the creation and characterization of a carbon nanotube based poly(lactic acid) nanofiber scaffold is described herein. After 28 d in physiological solution at 37 °C, a change in the mass, chemical properties and polymer morphology is seen, while the mechanical properties and physical integrity are unaltered. No adverse cytotoxic affects are seen when mesenchymal stem cells are cultured in the presence of the scaffold. Taken together, these data auger well for electroactive tissue engineering.
19.