共查询到16条相似文献,搜索用时 93 毫秒
1.
利用均相反应器,在没有添加剂的条件下合成了具有多孔结构的Cu2O微球.考察了合成时间以及反应器旋转速度对Cu2O微球结构的影响.通过增加聚乙烯吡咯烷酮(PVP)的用量,使得Cu2O从多孔微球转变为立方体孪晶,最终形成十四面体孪晶结构.同时,将不同结构的Cu2O多晶应用于催化高氯酸铵(AP)的热分解,结果表明:多孔Cu2O微球较其它结构的Cu2O对AP的热分解具有更高的催化活性,使得AP的低温分解温度降低了37.4°C,而AP在低温阶段的分解量也由8.7%增加至49.0%. 相似文献
2.
纳米Cu2O的制备及其对高氯酸铵热分解的催化性能 总被引:19,自引:0,他引:19
以Cu(NO3)2和NaOH为原料,以水合肼为还原剂,通过沉淀法在室温下制备了纳米Cu2O. 采用X射线衍射、透射电镜和X射线光电子能谱等手段对产物进行了表征,并用热分析法考察了不同形貌的纳米Cu2O对高氯酸铵热分解的催化作用. 结果表明,通过改变NaOH溶液的加入量可分别得到长针形和多边形的纳米Cu2O. 通过调节反应物浓度可以将纳米Cu2O粒径控制在19~68 nm. 不同形貌的纳米Cu2O均能强烈催化高氯酸铵的热分解,其中分散性良好的多边形纳米Cu2O的催化活性较高,添加2%的多边形纳米Cu2O可使高氯酸铵的高温分解温度降低103 ℃,分解放热量由590 J/g增至1350 J/g. 相似文献
3.
以乙酸锌和Se粉为原料,环己酮为溶剂,于180 ℃反应24 h制得黄色纳米球ZnSe,其结构和性能经XRD,SEM及TEM表征. 相似文献
4.
5.
采用胶晶模板法制备出具有三维多孔结构的纳米CoFe2O4。利用X射线衍射仪(XRD)、傅里叶变换红外(FT-IR)光谱仪、扫描电镜(SEM)、透射电镜(TEM)和N2吸附-脱附对样品的晶型和形貌结构等进行表征,采用差示扫描量热法(DSC)对比研究多孔纳米CoFe2O4和球形纳米CoFe2O4对高氯酸铵(AP)的热分解性能的影响,并考察这两种催化剂对AP催化热分解的动力学参数。结果显示,制备出的多孔纳米CoFe2O4样品具有典型的尖晶石结构,孔径约200 nm;比表面积明显高于40 nm球形CoFe2O4,达到55.646 m2·g-1。DSC测试结果表明:多孔纳米CoFe2O4的加入促进了AP的热分解,最高使AP的高温分解峰温降低91.46℃,能量释放最高达1120.88 J·g-1,是纯AP分解放热量的2.3倍;多孔纳米CoFe2O4具有较高的比表面积,能提高催化反应的接触面积,使AP的高温分解峰温度更低,反应活化能较小,从而表现出比球形纳米CoFe2O4更高的催化活性。此外,对多孔纳米CoFe2O4催化AP的热分解机理进行初步探索,纳米多孔催化剂对气态中间产物的作用促进了AP的热分解。 相似文献
6.
纳米Fe2O3/高氯酸铵复合粒子的制备及其热分解性能研究 总被引:8,自引:1,他引:7
用溶剂-非溶剂法制备了纳米Fe2O3/高氯酸铵(AP)复合粒子,并用TEM,SEM,XRD和ICP对其进行了表征.为了研究纳米复合粒子中纳米Fe2O3对AP热分解的催化性能,将相同比例的微米Fe2O3和纳米Fe2O3与AP分别简单混合后作对比,并用DTA对三种样品进行了热分析.结果表明,三种样品中的Fe2O3粒子都能催化AP的热分解;但纳米Fe2O3粒子的催化性能优于微米Fe2O3粒子,纳米Fe2O3/AP复合粒子中纳米Fe2O3对AP的催化性能优于纳米Fe2O3与AP简单混合物.与纳米Fe2O3与AP简单混合的样品相比,纳米复合粒子中的AP高温分解峰温降低20.1℃,低温分解峰几乎消失,表观分解热由850.2J/g提高到1080.8J/g.证明纳米Fe2O3与AP的复合处理能显著提高纳米Fe2O3对AP热分解的催化性能.并用不同样品中AP热分解的动力学参数对所得结果进行了理论分析. 相似文献
7.
双核茂铁四氮唑的合成及对高氯酸铵热分解的催化作用 总被引:2,自引:0,他引:2
首先以二茂铁为原料合成丙基桥联的双聚二茂铁(DFP), 经甲酰化得到丙基桥联的双聚二茂铁甲醛(DFP-CHO, 1), 再与NH2OH·5HCl进行缩合反应得到双核二茂铁肟(2), 然后脱水得到丙基桥联双聚二茂铁甲腈(3), 最后在(n-C4H9)3SnCl 的催化作用下与NaN3进行[2+3]环加成反应, 生成目标产物丙基桥联双聚二茂铁四唑(4); 通过1H NMR, FTIR和ESI-MS对目标产物的结构进行了表征. 利用差示扫描量热分析(DSC)和热重(TG)分析研究了这2个双聚二茂铁氮杂衍生物的燃速催化性能, 结果表明, 通过添加质量分数为5%的丙基桥联双聚二茂铁氮杂化合物3和4均使高氯酸铵(AP)的热分解温度降至100℃左右. 相似文献
8.
9.
溶剂热合成具有纳米孔结构的γ-Al2O3 总被引:2,自引:0,他引:2
0引言γ-Al2O3又称活性氧化铝,一般具有较高的比表面积,在工业生产中被广泛用作吸附剂和催化剂载体[1],尤其是可作为负载贵金属催化剂的载体[2 ̄4]。纳米级的γ-Al2O3由于颗粒粒径小而在其颗粒表面形成了丰富的失配键和欠氧键,以此制成多孔薄膜作为催化剂及催化剂载体,其性能比目前使用的同类产品性能要优越许多[5]。但纳米级的γ-Al2O3也存在一些缺点,如由于纳米颗粒的表面能较高导致了颗粒的团聚较严重,分散性较差;由于γ-Al2O3活性较高,所以其高温热稳定性不太好,这些缺点极大地限制了γ-Al2O3的应用范围。因此合成具有良好分散性和… 相似文献
10.
纳米Fe2O3的制备及其对高氯酸铵热分解的催化性能 总被引:21,自引:0,他引:21
用两相体系方法制备了纳米Fe2O3,并用X射线衍射、红外光谱和粒度分析对其结构进行了表征.结果表明,当有机溶胶的pH=6,油酸与Fe3+的摩尔比为1∶3.5时,Fe(OH)3在油相中的萃取率可高达90%,将有机溶胶在120℃回流8h后可得到非晶态、窄粒度分布的纳米Fe2O3粒子,其粒径在12nm左右.分别采用恒容燃烧热和差热分析研究了纳米Fe2O3对高氯酸铵热分解的催化性能.结果表明,在模拟固体推进剂中分别加入4.7%微米Fe2O3和4.7%纳米Fe2O3后,恒容燃烧热分别提高了2350.84和5095.70J/g.在高氯酸铵中加入5%微米Fe2O3可使高氯酸铵两个放热峰的出现分别提前1.10和62.25℃,而加入5%纳米Fe2O3时分别提前61.89和118.82℃,这说明纳米Fe2O3的催化活性优于微米Fe2O3. 相似文献
11.
Thermogravimetry-differential scanning calorimetry-mass spectrometry-Fourier transform infrared spectrometry(TG-DSC-MS-FTIR) simultaneous analysis was used to study the effects of 10.7 μm and 40 nm Al on the thermal decomposition of the Hexogen/ammonium perchlorate(RDX/AP,1/2,mass ratio) mixture.TG-DSC results show that there are two mass loss processes for the thermal decomposition of RDX/AP/Al.The first one is mainly ascribed to the thermal decomposition of RDX.The reaction rate of RDX/AP/10.7 μm Al is so fast that the apparent activation energy,calculated by model-free Friedman method,is negative,which is the same as that of RDX/AP.30%(mass fraction) 40 nm Al added in RDX/AP change the activation energy from negative to positive value.The second mass loss process of the RDX/AP/A1 mixture is ascribed to the thermal decomposition of AP.This process can be divided into three stages for RDX/AP with and without Al.The kinetics model is not changed in the presence of micro-sized Al,while it is changed from CnB/D1/D1 to CnB/D1/D4 after the addition of 40 nm Al to RDX/AP.The reaction rate constant of the first stage and the end temperature of the second stage decrease,while the end temperatures of the third stage increase in the presence of 40 nm Al.The MS-FTIR results show there is a competition between the formation reactions of HNCO,N2O and NO2 during the second mass loss process. 相似文献
12.
介绍一个仪器分析综合实验——纳米Fe_2O_3和Fe_3O_4的制备及其催化高氯酸铵热分解性能的研究。采用水热法合成纳米Fe_3O_4,进而煅烧得到纳米Fe_2O_3。使用X射线粉末衍射(XRD)对制得的样品结构进行表征,通过透射电镜(TEM)可以发现其为球形颗粒,粒径在10–20 nm范围内。将制得的纳米Fe_2O_3和纳米Fe_3O_4按不同比例加入高氯酸铵(AP)中,通过对混合物进行热分析(TG-DSC),发现纳米Fe_2O_3和纳米Fe_3O_4可以明显促进AP的分解,且Fe_2O_3的催化效果优于Fe_3O_4的催化效果,并对催化机理进行了简单讨论。通过该实验,可以让学生学习水热反应的方法,掌握利用XRD、热分析等多种手段对化合物结构及性能进行表征的技能。 相似文献
13.
Metal/oxide nanoparticles are attractive because of their special structure and better properties. The Ni/TiO2 nanoparticles were prepared by a liquid phase chemical reduction method in this paper. The obtained‐products were characterized by inductively coupled plasma (ICP), X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM). The results show that Ni particles in Ni/TiO2 nanoparticles exhibit better dispersion and the size of most Ni particles is 10 nm or so. The catalytic activity of Ni/TiO2 nanoparticles on the thermal decomposition of ammonium perchlorate (AP) was investigated by simultaneous thermogravimetry and differential thermal analysis (TG‐DTA). Results show that composite process of Ni and TiO2 can improve the catalytic activity of Ni nanoparticles on the thermal decomposition of AP, which is mainly attributed to the improvement of Ni dispersion in Ni/TiO2 nanoparticles. The catalytic activity of Ni/TiO2 nanoparticles increases with increasing the weight ratio of Ni to AP. 相似文献
14.
Mg2NiH4对高氯酸铵热分解过程的影响 总被引:1,自引:0,他引:1
采用置换-扩散法制备了储氢材料Mg2NiH4, 用XRD, ICP和DSC-TG方法对其结构进行了表征. 用热分析法(DSC)研究了Mg2NiH4对高氯酸铵(AP)热分解过程的影响. 研究结果表明, Mg2NiH4对AP热分解过程有较大影响. Mg2NiH4可以显著促进AP的低温热分解过程, 降低高温热分解温度, 使DSC表观分解热明显增大. 随着加入量的增加, Mg2NiH4对AP热分解的催化促进作用增强, 当Mg2NiH4加入的质量分数为30%时, DSC表观分解热最大. 吸氢量越大, 储氢材料对AP的催化促进作用越强. Mg2NiH4催化促进AP分解过程的作用机理为: Mg2NiH4分解释放的H2及Mg和Ni与AP分解产物发生反应. 相似文献
15.
Nano-Copper and Cu/UDD (ultradispersed diamond) nanocomposites were separately prepared by reduction of CuCl2 aqueous solution and that doped with 0.7%(weight percent) of ultra-dispersed diamond. The as prepared nano-crystals were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance techniques (EPR). It was found that homogeneous nucleation dominated the aqueous reduction reaction at high concentration and the diameter of nano-copper decreased as the reaction time shortened, yet at lower concentration heterogeneous nucleation predominated and the doped UDD functioned as heterogeneous nucleation. Otherwise large number of free-radicals existed in the nano-composites. Both of nano-copper and Cu/UDD nanocomposites were strong catalysts for AP decomposition, with Cu/UDD being a more effective one. The higher decomposition temperature for AP was 119 ℃ lower than that without catalyst. And the exothermic quantity of decomposition was from 590 J·g-1 to 1 400 J·g-1 by mix 2% of the Cu/UDD nanocomposites. 相似文献
16.
通过溶胶-凝胶法制备了石墨烯水凝胶, 并将其与高氯酸铵(AP)复合, 然后分别采用自然干燥、冷冻干燥和超临界CO2干燥三种干燥方式制备了AP/石墨烯复合材料, 并通过扫描电镜(SEM)、元素分析、X射线衍射(XRD)、差示扫描量热仪(DSC)和热重-红外联用技术(TG-FTIR)研究了不同干燥方式对其结构和热分解行为的影响. 结果表明, 干燥方式对AP/石墨烯复合材料的形貌具有明显影响, 其中通过超临界CO2干燥制备的AP/石墨烯复合材料基本能保持与石墨烯气凝胶相似的外观和多孔结构. 通过自然干燥、冷冻干燥和超临界CO2干燥制备的AP/石墨烯复合材料中AP的质量分数分别为89.97%、92.41%和94.40%, 其中通过超临界CO2干燥制备的复合材料中AP的粒径尺寸为69 nm. DSC测试结果表明, 石墨烯对AP的热分解过程具有明显的促进作用, 能使AP的低温分解过程大大减弱, 高温分解峰温明显降低. 三种干燥方式相比, 通过超临界CO2干燥制备的AP/石墨烯复合材料中石墨烯的促进作用最明显. 与纯AP相比, 其高温分解峰温降低了83.7℃, 表观分解热提高到2110 J·g-1. TG-FTIR分析结果表明, AP/石墨烯复合材料的热分解过程中, AP分解产生的氧化性产物与石墨烯发生了氧化反应, 生成了CO2. 相似文献