共查询到20条相似文献,搜索用时 62 毫秒
1.
"求线性规划问题可行基的一种方法"的再注记 总被引:1,自引:0,他引:1
文[1]给出一个求线性规划问题可行基的方法,文[2]指出其判定条件(3)有误,然而所用的反例并不正确。本文给出三个正确的反例;此外,还给出反例表明文[1]的判定条件(2)也不正确的。 相似文献
2.
线性规划求基可行解的一种方法 总被引:2,自引:0,他引:2
本文通过增加一个特殊约束,贯彻对偶单纯形法检验数全非正的思想,迭代求优;然后再去掉该约束,结果却可得到一个基可行解。上述过程经简化处理后,增减约束可以不必出现,它仅使单纯形表矩阵增加几次初等变换而已,足见其方法之简捷及有效性。 相似文献
3.
本文给出直接求线性规划问题基可行解的一种简易方法,该方法既避免了引入人工变量,减少存储,一般又能较快地得到一个较好的基可行解. 相似文献
4.
5.
求线性规划问题初始可行基的一种方法 总被引:4,自引:0,他引:4
Smale 证明了采用单纯形法求解线性规划问题,在概率平均意义下转轴次数为变量数目的线性函数.下面介绍不引进人工变量,直接由所给问题的标准形式 相似文献
6.
一类线性规划问题初始可行基产生的新方法 总被引:2,自引:1,他引:1
本对一类特殊的线性规划问题提出了利用最优基的启发性刻划产生初始基,进而用无比检验规则产生初始可行基的方法,并给出了此方法在单纯形表上实现的步骤。 相似文献
7.
讨论了线性规划的单纯形解法,给出了不须加人工变量就可得到一个可行基的算法.通过大量的算例表明此法比传统的单纯形方法具有算法结构简单,计算量小的优点. 相似文献
8.
线性规划的目标函数最速递减算法 总被引:4,自引:1,他引:4
在对偶单纯形方法的基础上,提出了线性规划的目标函数最速递减算法。它避开求初始可行基或初始基,以目标函数全局快速递减作为选基准则,将选基过程与换基迭代合二为一,从而大大减少了迭代次数。数值算例显示了该算法的有效性和优越性。 相似文献
9.
10.
11.
12.
对于含自由变量的LP问题,为了得到比单纯形法[1]更有效的算法,通过研究在单纯形法迭代过程中,将自由变量化为非负变量再实施运算的规律,提出一种能节省存贮空间和提高运算速度的改进单纯形法。数值实验表明新算法是有效的。 相似文献
13.
A Dual Projective Pivot Algorithm for Linear Programming 总被引:1,自引:0,他引:1
Ping-Qi Pan 《Computational Optimization and Applications》2004,29(3):333-346
Recently, a linear programming problem solver, called dual projective simplex method, was proposed (Pan, Computers and Mathematics with Applications, vol. 35, no. 6, pp. 119–135, 1998). This algorithm requires a crash procedure to provide an initial (normal or deficient) basis. In this paper, it is recast in a more compact form so that it can get itself started from scratch with any dual (basic or nonbasic) feasible solution. A new dual Phase-1 approach for producing such a solution is proposed. Reported are also computational results obtained with a set of standard NETLIB problems. 相似文献
14.
线性规划两阶段法的改进算法 总被引:2,自引:2,他引:2
将单纯形法与对偶单纯形法及其思想结合运用,对两阶段法引进人工变量的方式进行了改进,探索出一种最多引入一个人工变量,即可求得线性规划初始可行基的新算法,能有效地节约计算机的存储量和计算量。 相似文献
15.
Systems of linear inequalities are important tools to formulate optimization problems. However, the feasibility of the whole system was often presumed true in most models. Even if an infeasible system could be detected, it is in general not easy to tell which part of the system caused it. This motivates the study of continuous linear inequalities, given no information whether it is feasible or not, what is the largest possible portion of the system that can be remained in consistency? We first propose a bisection-based algorithm which comes with an auxiliary program to answer the question. For further accelerating the algorithm, several novel concepts, one called “constraint weighting” and the other called “shooting technique”, are introduced to explore intrinsic problem structures. This new scheme eventually replaces the bisection method and its validity can be justified via a solid probabilistic analysis. Numerical examples and applications to fuzzy inequalities are reported to illustrate the robustness of our algorithm. 相似文献
16.
17.
18.
Erling D. Andersen 《Computational Optimization and Applications》2001,20(2):171-183
In general if a linear program has an optimal solution, then a primal and dual optimal solution is a certificate of the solvable status. Furthermore, it is well known that in the solvable case, then the linear program always has an optimal basic solution. Similarly, when a linear program is primal or dual infeasible then by Farkas's Lemma a certificate of the infeasible status exists. However, in the primal or dual infeasible case then there is not an uniform definition of what a suitable basis certificate of the infeasible status is.In this work we present a definition of a basis certificate and develop a strongly polynomial algorithm which given a Farkas type certificate of infeasibility computes a basis certificate of infeasibility. This result is relevant for the recently developed interior-point methods because they do not compute a basis certificate of infeasibility in general. However, our result demonstrates that a basis certificate can be obtained at a moderate computational cost. 相似文献
19.
20.
J. Glackin J. G. Ecker M. Kupferschmid 《Journal of Optimization Theory and Applications》2009,140(2):197-212
We present an algorithm for solving bilevel linear programs that uses simplex pivots on an expanded tableau. The algorithm
uses the relationship between multiple objective linear programs and bilevel linear programs along with results for minimizing
a linear objective over the efficient set for a multiple objective problem. Results in multiple objective programming needed
are presented. We report computational experience demonstrating that this approach is more effective than a standard branch-and-bound
algorithm when the number of leader variables is small. 相似文献