首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of guanidinium ionic liquids(GILs) was designed, synthesized, and used as electrolytes for dye-sensitized solar celIs(DSSCs). The effect of electrolytes containing GILs on the photovoltaic performance of DSSCs was investigated. It is demonstrated that these GILs are promising for being used as electrolytes for DSSCs and a conversion efficiency of 4.1% can be obtained under AM 1.5 sun light irradiation.  相似文献   

2.
A novel composite polymeric gel comprising room-temperature ionic liquids (1-butyl-3-methyl-imidazolium-hexafluorophosphate, BMImPF6) and heteropolyacids (phosphotungstic acid, PWA) in poly(2-hydroxyethyl methacrylate) matrix was successfully prepared and employed as a quasi-solid state electrolyte in dye-sensitized solar cells (DSSCs). These composite polymer electrolytes offered specific benefits over the ionic liquids and heteropolyacids, which effectively enhanced the ionic conductivity of the composite polymer electrolyte. Unsealed devices employing the composite polymer electrolyte with the 3% content of PWA achieved the solar to electrical energy conversion efficiency of 1.68% under irradiation of 50 mW cm−2 light intensity, increasing by a factor of more than three compared to a DSSC with the blank BMImPF6-based polymer electrolyte without PWA. It is expected that these composite polymer electrolytes are an attractive alternative to previously reported hole transporting materials for the fabrication of the long-term stable quasi-solid state or solid state DSSCs.  相似文献   

3.
In this study, photovoltaic (PV) properties of dye‐sensitized solar cells (DSSCs) incorporated with graphene oxide nanosheet‐polyaniline (GOS‐PANI) nanohybrid/poly(ethylene oxide) (PEO) blend gel electrolytes were investigated. Chemical structure and composition of GOS‐PANI nanohybrids were characterized by Raman spectroscopy and X‐ray photoelectron spectroscopy. The images of transmission electron microscopy revealed that PANI nanorods were anchored to the single‐layered GOS for the GOS‐PANI nanohybrids. Ionic conductivities of the GOS‐PANI/PEO–based gel electrolytes were measured using a conductivity meter. The electrochemical catalytic activities of the GOS‐PANI nanohybrids were determined through cyclic voltammetry. These GOS‐PANI nanohybrids were served as the extended electron transfer materials and catalyst for the electrochemical reduction of I3?. Due to the enhancement of the ionic conductivity and electrochemical catalytic activity of the gel electrolyte, better PV performance was observed for the DSSCs based on the GOS‐PANI containing electrolytes as compared to the pristine PEO electrolyte‐based DSSC sample. Moreover, PV performances of the GOS‐PANI/PEO–based DSSCs were closely related to the PANI content of GOS‐PANI nanohybrids. The highest photo‐energy conversion efficiency (5.63%) was obtained for an optimized GOS‐PANI/PEO (5:95, w/w) blend gel electrolyte‐based DSSC sample. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 321–332  相似文献   

4.
A series of new push–pull organic dyes ( BT‐I – VI ), incorporating electron‐withdrawing bithiazole with a thiophene, furan, benzene, or cyano moiety, as π spacer have been synthesized, characterized, and used as the sensitizers for dye‐sensitized solar cells (DSSCs). In comparison with the model compound T1 , these dyes containing a thiophene moiety between triphenylamine and bithiazole display enhanced spectral responses in the red portion of the solar spectrum. Electrochemical measurement data indicate that the HOMO and LUMO energy levels can be tuned by introducing different π spacers between the bithiazole moiety and cyanoacrylic acid acceptor. The incorporation of bithiazole substituted with two hexyl groups is highly beneficial to prevent close π–π aggregation, thus favorably suppressing charge recombination and intermolecular interaction. The overall conversion efficiencies of DSSCs based on bithiazole dyes are in the range of 3.58 to 7.51 %, in which BT‐I ‐based DSSCs showed the best photovoltaic performance: a maximum monochromatic incident photon‐to‐current conversion efficiency (IPCE) of 81.1 %, a short‐circuit photocurrent density (Jsc) of 15.69 mA cm?2, an open‐circuit photovoltage (Voc) of 778 mV, and a fill factor (ff) of 0.61, which correspond to an overall conversion efficiency of 7.51 % under standard global AM 1.5 solar light conditions. Most importantly, long‐term stability of the BT‐I – III ‐based DSSCs with ionic‐liquid electrolytes under 1000 h of light soaking was demonstrated and BT‐II with a furan moiety exhibited better photovoltaic performance of up to 5.75 % power conversion efficiency.  相似文献   

5.
用甲基丙烯酸β-羟乙酯(HEMA)与N-乙烯基吡咯烷酮(NVP)共聚物P(HEMA-NVP)、甲基丙烯酸甲酯(MMA)与N-乙烯基吡咯烷酮共聚物P(MMA-NVP)为原料制备了聚合物凝胶电解质, 用电化学阻抗谱(EIS)研究了聚合物凝胶电解质中聚合物基质的结构与组成对准固态染料敏化太阳能电池(DSSCs)光伏性能的影响. 不同交联剂用量、不同HEMA用量的P(HEMA-NVP)共聚物及不同MMA用量的P(MMA-NVP)吸收液态电解质后分别形成HGelI、HGelII、MGel凝胶电解质. 结果发现, 随共聚物P(HEMA-NVP)中交联剂由0.1%(w, 下同)增大到0.6%时, 形成的HGelI 组装的DSSCs的光电转化效率(η)先增大后降低, 交联剂用量为0.4%时, DSSCs的η为最大, 为5.54%(光强100 mW·cm-2). 同时, 比较HGelII 系列和MGel 系列DSSCs的光电性能参数发现, 含有羟基的HGel 系列的η要高于MGel 系列, 而后者的开路电压(Voc)值高于前者. 在HGelII 系列中, HEMA含量为60%(w)时, DSSCs的η最高. 电化学阻抗谱分析表明共聚物中交联结构的不同影响了电池内部的界面阻抗及离子的传输, 引入羟基有利于降低界面阻抗. 通过调整共聚物中交联剂用量和羟基含量可改善DSSCs的光伏性能.  相似文献   

6.
Four new 5-phenyl-iminostilbene dyes (ISB-36) containing electron-withdrawing benzo-[c][1,2,5]thiadiazole have been designed and synthesized for use as DSSCs. Their absorption properties and electrochemical and photovoltaic performances have been investigated systematically. Among these dyes, DSSCs based on a dye containing benzo-[c][1,2,5]thiadiazole and benzene moieties (ISB-4) showed the best performance: a short-circuit photocurrent density (Jsc) of 13.69 mA cm−2, an open-circuit photovoltage (Voc) of 722 mV, and a fill factor (FF) of 0.71, which corresponds to a power conversion efficiency (PCE) of 6.71%, under optimized conditions. Additionally, long-term stability of the ISB-4 based DSSCs with ionic-liquid electrolytes was demonstrated under 1000 h of light soaking, the photovoltaic performance is up to 5.75%. The results suggest that 5-phenyl-iminostilbene containing dyes are promising candidates for application in DSSCs.  相似文献   

7.
Two new benzotriazole-bridged sensitizers are designed and synthesized ( BTA-I and BTA-II ) containing a furan moiety for dye-sensitized solar cells (DSSCs). Two corresponding dyes ( BTA-III and BTA-IV ) with a thiophene spacer were also synthesized for comparison. All of these dyes performed as sensitizers for DSSCs, and the photovoltaic performance data of these benzotriazole-bridged dyes showed a high open-circuit voltage (Voc: 804–834 mV). Among the four dyes, DSSCs based on BTA-II , with a furan moiety and branched alkyl chain, showed the highest Voc (834 mV), a photocurrent density (Jsc) of 12.64 mA cm−2, and a fill factor (FF) of 0.64, corresponding to an overall conversion efficiency (η) of 6.72 %. Most importantly, long-term stability of the BTA-I , BTA-II , BTA-III , BTA-IV -based DSSCs with ionic-liquid electrolytes under 1000 h light-soaking was demonstrated, and BTA-II exhibited better photovoltaic performance of up to 5.06 % power conversion efficiency.  相似文献   

8.
The effect of terminal groups of oligomer electrolytes on the photovoltaic performance of dye-sensitized solar cells (DSSCs) have been systematically investigated to show that the terminal group plays a critical role in determining the concentration of I(3)(-), ionic conductivity, flatband potential and consequently the energy conversion efficiency.  相似文献   

9.
Discotic mesogenic molecules viz., hexahexylthiotriphenylene (HHTT) and hexahexyloxytriphenylene were applied, for the first time, as iodine-free redox electrolyte in dye-sensitised solar cells (DSSCs). The cell shows open circuit voltage (Voc) of 0.95 V, short circuit current density (Jsc) of 0.534 mA/cm2, fill factor 88.24% and overall power conversion efficiency (η) 0.45% in a typical fluorine doped tin oxide/TiO2/N719/HHTT/Pt DSSC configuration. Scanning electron microscopy was used to study surface profile of electrolytes while electrochemical impedance spectroscopy was used to understand the electrochemical behaviour of electrolytes. The photovoltaic parameters were measured under standard conditions using Oriel solar simulator class AAA. These first results demonstrate the potential of the discotic molecules as charge transporter and mediator and show promise to be used in iodine-free DSSCs.  相似文献   

10.
The application of electrospun nanofibers in electronic devices is limited due to their poor adhesion to conductive substrates. To improve this, a seed layer (SD) is introduced on the FTO substrate before the deposition of the electrospun composite nanofibers. This facilitates the release of interfacial tensile stress during calcination and enhances the interfacial adhesion of the AZO nanofiber films with the FTO substrate. Dye-sensitized solar cells (DSSC) based on these AZO nanofiber photoelectrodes have been fabricated and investigated. An energy conversion efficiency (η) of 0.54-0.55% has been obtained under irradiation of AM 1.5 simulated sunlight (100 mW/cm2), indicating a massive improvement of η in the AZO nanofiber film DSSCs after SD-treatment of the FTO substrate as compared to those with no treatment. The SD-treatment has been demonstrated to be a simple and facile method to solve the problem of poor adhesion between electrospun nanofibers and the conductive substrate.  相似文献   

11.
In this work, high‐performance dye‐sensitized solar cells (DSSCs) based on new low‐cost visible nickel complex dye (VisDye), TiO2 nanoparticle/nanotube composites electrodes, carbon nanoparticles counter electrodes, and ionic liquids electrolytes have been fabricated. The electronic structure, optical spectroscopy, and electrochemical properties of the VisDye were studied. Experimental results indicate that it is beneficial to improve the electron transport and power conversion efficiency using the nickel complex VisDye and TiO2 nanoparticle/nanotube composites. Under optimized conditions, the solar energy conversion efficiencies were measured. The short‐circuit current density (JSC), the open‐circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) of the DSSCs are 10.01 mA/cm2, 516 mV, 0.68, and 3.52%, respectively. This study demonstrates that the combination of new VisDye with TiO2 nanoparticle/nanotube composites electrodes and carbon nanoparticles counter electrodes provide a way to fabricate highly efficient dye‐sensitized solar cells in low‐cost production.  相似文献   

12.
The doping of polymer electrolytes (PEs) with liquid crystal (LC) materials has been shown to improve the performance of dye-sensitised solar cells (DSSCs). This is achieved by promoting ionic conduction and increasing optical path length through multiple-light scattering within the photovoltaic devices. In LCs, it is well known that the length of the alkyl chain plays an important role since the LC morphology and mesophase stabilisation depend strongly on the alkyl group. In this work, liquid crystal-polymer composite electrolytes (LC-PEs) are prepared using nematic LCs with different alkyl chain lengths. The morphology of the LC-PEs is investigated and correlated with their electrical properties. Subsequently, DSSCs are prepared using the LC-PEs as a direct example of its application. It is shown that increasing the alkyl chain length of the LCs reduces the efficiency of the solar devices. The longer alkyl chains are speculated to intertwine, thus trapping the mobile ions and reducing the bulk ionic conductivity. For the same reason, longer alkyl chain LCs are thought to be unable to passivate the TiO2 surface through the adsorption of cyanobiphenyl groups and hence the higher probability of back recombination reaction between the electrons in TiO2 and PE.  相似文献   

13.
Poly(methyl acrylate) (PMA), poly(vinyl acetate) (PVAc) and poly(n-isopropylacrylamide) (PNIPAAm) with their respective Tg of 6, 32, and 145 °C were employed to gel the LiI/I2/tertiary butylpyridine electrolyte system for preparation of the gelled-type dye-sensitized solar cells (DSSC). The light-to-electricity conversion efficiencies of DSSCs gelled by PMA, PVAc, and PNIPAAm were 7.17%, 5.62%, and 3.17%, respectively under simulated AM 1.5 sunlight irradiation, implying that utilizing the polymer of lower Tg to gel the electrolytes leaded to better performance of the DSSCs. Their short-circuit current density and IPCE also showed the similar trend. Electrochemical impedance spectroscopy of the gelled DSSCs revealed that utilizing the polymer of lower Tg resulted in lower impedance associated with the Nernstian diffusion within the electrolytes. The results were consistent with the observation that the molar conductivity of gelled electrolytes was higher as the polymer of lower Tg was applied, which can be justified by Vogel-Tammann-Fulcher (VTF) equation.  相似文献   

14.
Dye-sensitized solar cells (DSSCs) have established themselves as an alternative to conventional solar cells owing to their remarkably high power conversion efficiency, longtime stability and low-cost production. DSSCs composed of a dyed oxide semiconductor photoanode, a redox electrolyte and a counter electrode. In these devices, conversion efficiency is achieved by ultra-fast injection of an electron from a photo excited dye into the conduction band of metal oxide followed by subsequent dye regeneration and holes transportation to the counter electrode. The energy conversion efficiency of DSSC is to be dependent on the morphology and structure of the dye adsorbed metal oxide photoanode. Worldwide considerable efforts of DSSCs have been invested in morphology control of photoanode film, synthesis of stable optical sensitizers and improved ionic conductivity electrolytes. In the present investigation, a new composite nano structured photoanodes were prepared using TiO2 nano tubes (TNTs) with TiO2 nano particles (TNPs). TNPs were synthesized by sol–gel method and TNTs were prepared through an alkali hydrothermal transformation. Working photoanodes were prepared using five pastes of TNTs concentrations of 0, 10, 50, 90, and 100 % with TNPs. The DSSCs were fabricated using Indigo carmine dye as photo sensitizer and PMII (1-propyl-3-methylimmidazolium iodide) ionic liquid as electrolyte. The counter electrode was prepared using Copper sulfide. The structure and morphology of TNPs and TNTs were characterized by X-ray diffraction and electron microscopes (TEM and SEM). The photocurrent efficiency is measured using a solar simulator (100 mW/cm2). The prepared composite TNTs/TNPs photoanode could significantly improve the efficiency of dye-sensitized solar cells owing to its synergic effects, i.e. effective dye adsorption mainly originated from TiO2 nanoparticles and rapid electron transport in one-dimensional TiO2 nanotubes. The results of the present investigation suggested that the DSSC based on 10 % TNTs/TNPs showed better photovoltaic performance than cell made pure TiO2 nanoparticles. The highest energy-conversion efficiency of 2.80 % is achieved by composite TNTs (10 %)/TNPs film, which is 68 % higher than that pure TNPs film and far larger than that formed by bare TNTs film (94 %). The charge transport and charge recombination behaviors of DSSCs were investigated by electrochemical impedance spectra and the results showed that composite TNTs/TNPs film-based cell possessed the lowest transfer resistances and the longest electron lifetime. Hence, it could be concluded that the composite TNTs/TNPs photoanodes facilitate the charge transport and enhancing the efficiencies of DSSCs.  相似文献   

15.
纯聚偏氟乙烯-六氟丙烯共聚物(PVDF-HFP)基凝胶电解质常常受制于低离子电导率,阻碍了其在染料敏化太阳电池(dye-sensitized solar cells,DSSCs)中的应用。 而利用纳米填充可提高凝胶电解质离子电导率及凝胶电解质DSSCs的性能。 本文使用功能化的多壁碳纳米管(f-MWCNT)作为PVDF-HFP凝胶电解质的纳米填充物,通过改变f-MWCNT的质量分数来研究其对电解质的离子电导率和离子扩散的影响,进而研究其对DSSCs的转化效率和长期稳定性的增强作用。 研究发现:质量分数0.5%的f-MWCNT明显提高了PVDF-HFP凝胶电解质的离子电导率和离子扩散系数。 并且,该凝胶电解质基DSSCs的光转换效率可达5.28%,相比于未填充的PVDF-HFP凝胶电解质基DSSCs(4.01%),其效率提高了31.7%。 42 d后,该电池依然可以保持最初转化效率的86.5%。 实验结果证实了f-MWCNT在纳米填充方面的巨大潜能,为采用纳米填充物提高凝胶电解质DSSCs的性能提供参考。  相似文献   

16.
Two types of ionic liquids (ILs), 1‐(3‐hexenyl)‐3‐methyl imidazolium iodide and 1‐(3‐butenyl)‐3‐methyl imidazolium iodide, are synthesized by introducing an unsaturated bond into the side alkyl chain of the imidazolium cation. These new ionic liquids exhibit high thermal stability and low viscosity (104 cP and 80 cP, respectively). The molecular dynamics simulation shows that the double bond introduced in the alkane chain greatly changes the molecular system space arrangement and diminishes the packing efficiency, leading to low viscosity. The low viscosity of the synthesized ionic liquids would enhance the diffusion of redox couples. This enhancement is detected by fabricating dye‐sensitized solar cells (DSSCs) with electrolytes containing the two ILs and I2. The highest efficiency of DSSCs is 6.85 % for 1‐(3‐hexenyl)‐3‐methyl imidazolium iodide and 5.93 % for 1‐(3‐butenyl)‐3‐methyl imidazolium iodide electrolyte, which is much higher than that of 5.17 % with the counterpart 1‐hexyl‐3‐methyl imidazolium iodide electrolyte.  相似文献   

17.
Dye-sensitized solar cells (DSSCs) employing a viscous non-volatile electrolyte were prepared by utilizing anatase TiO2 nanorods (synthesized via oriented attachment) as a photoanode material. One promising way to enhance the photovoltaic performance of DSSCs employing viscous electrolytes is to increase ion conductivity by increasing the salt concentration. This is accompanied by an acceleration of the charge recombination reaction and the limiting of the overall conversion efficiency. The results showed that a TiO2 nanorod electrode enables more favorable electron transport than a conventional nanoparticle-based electrode due to the improved electron diffusion length and the large intrinsic surface area.  相似文献   

18.
Developing photosensitizers suitable for the cobalt electrolyte and understanding the structure-property relationship of organic dyes is warranted for the dye-sensitized solar cells (DSSCs). The DSSCs incorporating tris(1,10-phenanthroline)cobalt(II/III)-based redox elec-trolyte and four synthesized organic dyes as photosensitizers are described. The photovoltaic performance of these dyes-sensitized solar cells employing the cobalt redox shuttle and the influences of the π-conjugated spacers of organic dyes upon the photovoltage and photocur-rent of mesoscopic titania solar cells are investigated. It is found that organic dyes with thiophene derivates as linkers are suitable for DSSCs employing cobalt electrolytes. DSSCs sensitized with the as-synthesized dyes in combination with the cobalt redox shuttle yield an overall power conversion efficiency of 6.1% under 100 mW/cm2 AM1.5 G illumination.  相似文献   

19.
We prepared the polyethylene oxide (PEO)-based composite membrane electrolytes which contained the specialized ionic liquids and the inorganic filler of Li7La3Zr2O12 (LLZO). Mixtures of ionic liquids and tetragonal inorganic fillers were used as additives to prepare composite electrolytes for an application of all solid-state lithium ion batteries (ASLBs). In order to improve the ionic conductivity of composite membranes, we studied the structural change and the electrochemical behaviors as a function of the amounts of solvated ionic liquids (ILs). The addition effect of solvated ILs showed the higher ionic conductivity such as 10?4 S/cm at 55 °C by reducing the crystalline character of polymer based composite, resulting in the enhanced ion conducting property. The hybrid composite membranes were successfully made in flexible form, and have an excellent thermal and electrochemical stability. Finally, the electrochemical performance of the half-cell was evaluated, and it was confirmed that the ion-conducting characteristics were influenced and controlled by the effect of ILs.  相似文献   

20.
Lithium-sulfur batteries with high energy density are considered as one of the most promising future energy storage devices. However, the parasitic lithium polysulfides shuttle phenomenon severely hinders the commercialization of such batteries. Ionic liquids have been found to suppress the lithium polysulfides solubility, diminishing the shuttle effect effectively. Herein, we performed classical molecular dynamics simulations to explore the microscopic mechanism and transport behaviors of typical Li2S8 species in ionic liquids and ionic liquid-based electrolyte systems. We found that the trifluoromethanesulfonate anions ([OTf]) exhibit higher coordination strength with lithium ions compared with bis(trifluoromethanesulfonyl)imide anions ([TFSI]) in static microstructures. However, the dynamical characteristics indicate that the presence of the [OTf] anions in ionic liquid electrolytes bring faster Li+ exchange rate and easier dissociation of Li+ solvation structures. Our simulation models offer a significant guidance to future studies on designing ionic liquid electrolytes for lithium-sulfur batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号